
 

Abstract- The spatial filtering of electroencephalogram 
data is crucial when analyzing the brain activity. Spatial 
filters increase the signal-to-noise ratio, thus allowing 
better classification of the analyzed mental states. This 
study will show the evolution in the selection of the most 
appropriate spatial filter when subjects are training to 
control a brain-computer interface. Different filters -the 
common average reference and the estimation of the 
surface Laplacian both using finite different methods 
and spherical splines- have been adapted and evaluated 
for a particular configuration of electrodes, using only 
eight positions: F3, C3, P3, Cz, Pz, F4, C4, and P4. 
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I. INTRODUCTION 

Brain-computer interfaces (BCI) are an alternative means 
of communication with computers. These are systems 
mainly addressed to impaired people, who do not have an 
accurate control of their muscles, but often a clever mind. 
Pathologies such as spinal muscular atrophy, spina bifida, or 
spinal cord injury prevent from leading a normal life. But 
some pathologies lead to severe-motor impairments. 
Subjects are unable to execute any movement, the illness 
having spread to involve most of the body and face, i.e. 
people suffering amyotrophic lateral sclerosis, or particular 
cases of cerebral palsy. 

Over the past few years some groups [1] [2] [3] [4] have 
demonstrated the possibility to recognize a few mental tasks 
from on-line spontaneous electroencephalogram (EEG) 
signals and have associated them to simple commands such 
as “move cursor up”. 

The main problem when analyzing EEG signals is the 
very low signal-to-noise (SNR) ratio (-5 dB) [5]. The 
classical filtering methods can increase the SNR, reducing 
the noise from artifacts like EMG or some ocular artifacts.  

The complexity and variability of the source signals, both 
inter-subjects and intra-subjects, lead us to filter the data 
spatially. The main problem is a deblurring of the 
information when the ions travel from the surface of the 
brain to the scalp. Spatial filters try to minimize this effect 
by giving a more representative pattern of what is really 
happening at each location, substantially increasing the SNR 
of the EEG signals. 

In this paper we investigate the most appropriate spatial 
filter when a small number of electrodes are considered, and 
the evolution in the selection of the filter when a person 
learns how to operate a BCI. 
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II. METHODOLOGY 

A. Data acquisition 

A commercial head-cap, with electrodes attached in the 
10-20 international system of electrode placement is used 
for the EEG data acquisition. Each electrode is plugged 
directly into an amplifier to avoid problems in data 
transmission. Signals go to a portable electroencephalograph 
prototype [2]. The reference is placed in both ear lobes to 
have an appropriate balance between the potentials coming 
from the two brain hemispheres. The earth of the overall 
acquisition system is also applied to one of the ear lobe. 

B. Acquisition protocol 

The acquisition of the EEG data is done with the subject 
seated in a comfortable chair and spontaneously 
concentrates on different mental states. 

The subject performs the selected task during 10 to 15 
seconds, and he/she chooses when to stop doing it and the 
next to be undertaken. Each recording session lasts about 5 
minutes.  The subjects selected for this study had to 
mentally perform one of the following mental tasks: relax, 
cube in rotation, and the imagined movement of the left 
hand. 

Relax state is one of the easiest, in which the subject 
remains with closed eyes and relaxed. For the cube rotation 
stage the subject remains with eyes open and imagine a 
three-dimensional cube spinning around one of its axis. This 
mental state is mainly associated with the right hemisphere 
of the brain, which is mainly responsible of the mentally 
visualization. The left-hand movement imagination is a 
motor related task in which the subject remains with eyes 
open and imagines repetitive movements of the left hand. 

During the early stages of the training process, the user 
performs the mental states without any feedback on what is 
going on. This gives the user the time to get used to the 
different states. As soon as they start having a slight control 
of their thoughts, visual feedback is provided. The feedback 
is based on three buttons -each one corresponding to a 
particular mental state- that light up when the corresponding 



 

state is recognized. The brightness of the button is 
proportional to the accuracy in the classification. 

C. Pattern detection 

Data are acquired from eight positions: F3, C3, P3, Cz, Pz, 
F4, C4, and P4, covering the central part of the brain. The 
data are continuously acquired in blocks of 0.5 seconds. The 
sample frequency is 128 Hz. The frequency band analysed 
ranges from 8 to 30 Hz, which contains the most significant 
information of the brain activity required for the purpose of 
the present study. 

Once the data are acquired the power spectrum is 
estimated for each channel. The averaged Welch 
periodogram is computed over segments of 1 s, averaging 
three windows of half a second with 50% overlap between 
segments. A Hamming window has been selected due to its 
appropriate balance between the peak sidelobe level and the 
sidelobe decade rate when windowing the EEG data. 

D. Pattern classification 

Detected patterns are classified using a local neural 
network (LNN), where every unit represents a prototype of 
one of the mental tasks to be recognized [6]. The LNN finds 
the appropriate position, and receptive field, of the 
prototypes in the high dimensional input space defined by 
the estimated power spectrum components. The basic idea is 
that, during training, units are pulled towards the EEG 
patterns of the mental task they represent and are pushed 
away from the EEG patterns representing other tasks. 

E. Spatial filters 

The current study faces the problem of spatially filtering 
the EEG signal using a small number of electrodes.  

The spatial frequency is the variation in the scalp 
potential field over distance. The selection of only eight 
electrodes impairs the EEG accuracy due to the spatial 
aliasing, i.e.  ghost spatial frequencies appearing as smooth 
patterns which are not present in the subject’s scalp. 

Three methods have been considered to spatially filter the 
EEG data: 1) the estimation of the Surface Laplacian 
considering Finite Difference Methods (SL_FDM), 2) the 
Common Average Reference (CAR) and, 3) the estimation 
of the Surface Laplacian on a spherical spline approach 
(SL_SS). The spatial filter is applied to the EEG data before 
the estimation of the power spectrum. 

As it is referred by McFarland [7], the surface Laplacian 
is the most appropriate technique to filter the EEG data 
spatially. It provides an estimate of the local radial (normal) 
current density through the skull into the scalp. 

Mathematically, the Laplacian method calculates the 
second derivative of the instantaneous spatial voltage 
distribution for each electrode location, and thereby 
emphasizes activity originated in radial sources immediately 
below the electrode. 

Laplacian derivation acts as a high-pass spatial filter, thus 
enhancing focal activity  from  local  sources,  and  reducing 

 
Fig. 1. Electrodes configuration. 

widely distributed activity, including that from distant 
sources (e.g. EMG, eye movements and blinks, visual alpha 
rhythm) 

The first method estimates the surface Laplacian using 
finite different methods [8]. A particular set of equations 
have been developed for the configuration shown in Fig. 1.  

Basically, SL_FDM replace the derivatives of an 
unknown function by the difference quotients of unknown 
functions. In the configuration defined in Fig. 1, the 
potential function u of each electrode within a particular 
domain Ω bounded by a contour Ґ satisfies the Poisson’s 
equation and is subject to the Dirichlet boundary conditions 
as it is shown in (1) and (2). 

Ω  domain  in   y)F(x, u2 =∇  (1) 
Γboundary    on  )g(  u Γ=

Γ
 (2) 

In the present case a square grid has been adopted to 
define the domain Ω. Considering the definition of the 
difference quotients, Taylor’s series are used to derive the 
difference equation defined in (1). The general expression of 
the SL_FDM is shown in (3) and (4).  
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Si is the set of electrodes surrounding the ith electrode, 
and dij is the distance between electrodes i and j (where j is a 
member of Si). The Ui

ER is the potential between the ith 
electrode and the ear-reference, and parameter n is the 
number of electrodes in the montage. 

The second methodology is the common average 
reference. CAR subtracts the common activity in the brain 
to the position of interest [9]. The idea under the CAR is to 
remove the averaged brain activity, which can be seen as 
EEG noise. The formula used to compute the CAR is shown 
in (5).  
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The third considered technique is the surface Laplacian 
transformation by using spherical splines of order 2 [10]. 
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Fig. 2. Classification rates for user WWC. 

III. RESULTS 

The small number of electrodes increases the problem of 
a lack of information to properly apply the different 
methodologies. For the configuration shown in Fig. 1 the 
SL_FDM has to be computed considering boundary 
condition for all the electrodes. For the SL_SS there are not 
enough electrodes to perform a good estimation of the 
surface Laplacian using spherical splines. Despite these 
theoretical considerations, appropriate estimations have been 
developed for each particular methodology. 

The SL_FDM has been estimated for the set of 
electrodes: C3, P3, Cz, Pz, C4, and P4, using finite difference 
methods. When an electrode is missing, no brain activity is 
considered in that position, i.e. the potential is considered to 
be equal to 0. Under a theoretical point of view, the surface 
Laplacian calculated by using spherical splines should 
require at least 20 positions to represent a good estimate. 
Cincotti et al. [11] have demonstrated that a small number of 
points also achieves a good definition of the spherical spline 
for the estimation of the surface Laplacian. 

Many training sessions have been done with a significant 
number of subjects –healthy people- during the last years. 
For the purpose of this study three different users have been 
selected representing our control group. The users are one 
female (WWC) and two males (CS and OPC). All are right-
handed. They were volunteers. WWC has been selected 
because she was able to control the system in only one hour 
of training. CS represents the general finding of this study.  
OPC is an impair person suffering from spinal muscular 
atrophy. 

The SL_FDM has always achieved less recognition rates 
for the considered mental states than the CAR and the 
SL_SS. For this reason and not confusing the reader, the 
classification rates for SL_FDM will not be considered. 

The results are shown in the histograms from Fig. 2 to 
Fig. 4. The histogram shows the results of each session 
(horizontal axis) against the classification accuracy (vertical 
axis, where 1.0 represents 100%). Each session shows 4 
bars. The first one is the recognition rate of the CAR filter, 
and the second bar is the corresponding wrong 
classifications, i.e. when the classifier has recognized mental 
states as belonging to a different class. The third bar is the 
recognition rate of the SL_SS and the fourth bar represents 
its percentage of wrong classifications. 
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Fig. 3. Classification rates for user CS. 

User WWC is one of the best examples illustrating the 
evolution  of  the  best  spatial filter.  This  evolution  is 
graphically illustrated in Fig. 2. Session 1 was the user’s 
first time with the system. No feedback was supplied. The 
SL_SS method achieved better results (60% recognition and 
2% wrong responses instead of 48% and 4%). In session 2, 
the user explained to us that she already had some control of 
the different mental states she selected, and the CAR 
method performed slightly better than SL_SS (87% of 
recognition instead of 85%). 

In session 3, SL_SS achieved better performance because 
it was the first time the user received feedback, i.e. visual 
information on the recognition of her mental states. The 
feedback slightly affected her concentration level. A much 
more objective filter, not using brain activity, was more 
efficient (77% of recognition for SL_SS instead of 58%).  

Finally, in session 4, with the user accustomed to the 
feedback, CAR returns to achieving a higher recognition 
rate (83% instead of 80%) with less wrong responses (10% 
instead of 11%). 

The case of user CS is a good representation of our 
general findings. His data are represented in Fig. 3. In 
sessions 1 and 2 no feedback was provided and it was the 
first time the subject used the system. Therefore, in session 
1 the SL_SS was the best filter. In session 2 the SL_SS 
could also be considered the best filter due to a lower wrong 
recognition rate (6% instead of 10%). 

Curiously in session 3, although feedback was provided 
to the user, the CAR method was the best one instead of 
SL_SS as expected. When asked how to perform the task, 
the user revealed that he did not watch the screen during the 
session because the feedback disturbed him. In session 4 no 
feedback was shown and the user performed the different 
tasks perfectly filtered. The CAR method achieving really 
good recognition rates. Again it is possible to observe how 
the CAR spatial filter achieved the best classification rates 
when the users were able to control their thoughts. That is,  
the use of the individual brain activity to spatially filter the 
data is the most appropriate way to reveal the hidden 
patterns associated to the targeted mental states. 

As a last example, another representative user has been 
chosen. User OPC, a physically-impaired person, reproduce 
the patterns that emerge from the previous experiments. His 
performance is shown in Fig. 4. In the first two sessions 
OPC got used to the interface and started to manage the 
different  mental  states.   The  performance of  these  mental 
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Fig. 4. Classification rates for user OPC. 

states was not optimal due to the fact that it was all new to 
the user. At this stage, a much more objective method 
achieved the best classification rates, i.e. the SL_SS filter. In 
session 3 the user started getting used to the interface. Thus 
the CAR method filtered better than SL_SS (85% in front of 
73%). 

In session 4 the first feedback was provided, disturbing 
the control of the mental states. Thus the best classifications 
were achieved with the SL_SS method. Again, once the 
person got used to the feedback, the CAR filter achieved 
better results. In the last session although SL_SS performed 
slightly better than CAR in terms of number of correct 
classifications, CAR still achieved the lowest number of 
incorrect responses (0.01% instead of 0.05%). 

IV. DISCUSSION 

It is a fact that the first time subjects use the system, they 
are more worried about the overall procedure than the 
performance of spontaneous-EEG signals related to the 
selected mental states. At this stage, spherical splines are the 
most convenient procedure to spatially filter the data. The 
splines do not required specific EEG data defining the filter 
but it is a filter defined using a mathematical model. 

Once subjects have more confidence with the system, 
they perform the mental states in a more spontaneous way. 
They are able to balance and control their mental activity 
when performing the cognitive or motor-related patterns. At 
this stage a common average reference for filtering the EEG 
data is the most appropriate. CAR directly involves the brain 
activity resulting as a natural filter for the brain activity. 

 V. CONCLUSION 

An interesting evolution in the selection of the most 
appropriate spatial filter of brain activity  has been observed 
when a person is learning how to operate a BCI. The main 
problem defining the filter is the use of a configuration with 
a small number of electrodes. Only eight positions have 
been considered: F3, C3, P3, Cz, Pz, F4, C4, and P4. The 
estimation of the surface Laplacian based on finite 
difference methods is not accurate enough due to a lack of 
information, i.e. the filter is always under boundary 
conditions. The common average reference and the 
estimation of the surface Laplacian based on spherical 
splines have demonstrated the filter capabilities when few 
electrodes are available. 

At the very beginning of the training process the users do 
not properly control their brain activity. This stage requires 
a more objective method, i.e. brain activity is not directly 
involved in the definition of the filter. The surface Laplacian 
based on the spherical spline approach achieves the best 
classification rates at this stage (average of 65% in front of 
57%). After a period of training, when the users better 
balance their brain activity and are more conscious of their 
mental states, a common average reference defined with the 
present brain activity is the method achieving the best 
recognition rates of the mental states (83% in front of 76%). 
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