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Abstract— In this paper we investigate the use of a temporal
extension of Independent Component Analysis (ICA) for the
discrimination of three mental tasks for asynchronous EEG-based
Brain Computer Interface systems. ICA is most commonly used
with EEG for artifact identification with little work on the use of
ICA for direct discrimination of different types of EEG signals. In
a recent work we have shown that, by viewing ICA as a generative
model, we can use Bayes’ rule to form a classifier obtaining state-
of-the-art results when compared to more traditional methods
based on using temporal features as inputs to off-the-shelf
classifiers. However, in that model no assumption on the temporal
nature of the independent components was made. In this work
we model the hidden components with an autoregressive process
in order to investigate whether temporal information can bring
any advantage in terms of discrimination of spontaneous mental
tasks.

I. INTRODUCTION

EEG-based Brain Computer Interface (BCI) systems allow a
person to control devices by using observed electrical activity
vj

t , at time t, recorded by electrodes placed over the scalp
at locations j = 1, . . . , V . In the case of systems based on
spontaneous brain activity, the user concentrates on different
mental tasks (e.g. imagination of hand movement) which are
associated with different device commands. Tasks are normally
selected so that task-dependent areas in the brain become
active. The most prominent characterization of activity is the
attenuation of rhythmic components, mostly in the α band.
Standard approaches extract the frequency content of the
signal, which is then processed by a static classifier (see [12]
for a general introduction on BCI research).

Signals recorded at scalp electrodes are commonly consid-
ered as a linear and instantaneous superposition of unobserved
or hidden electromagnetic activity hi

t generated by indepen-
dent brain processes, i = 1, . . . , H . For these reasons Inde-
pendent Component Analysis (ICA) [6] seems an appropriate
model of EEG signals and has been extensively applied to
related tasks, such as the identification of artifacts ([7], [11])
and the analysis of the underlying brain sources.

More specifically related to BCI research, several studies
have addressed the issue of whether an ICA decomposition can
enhance differences in the mental tasks such as to improve the
performance of brain-actuated systems. Most of these studies
use static versions of ICA either as a form of preprocessing,
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or to aid analysis of the signal. In contrast to our approach
below, they do not use ICA itself to directly form a classifier.
In [8], the authors analyze a visual attention task and show
that ICA finds µ-components which show a spectral reactivity
to motor events stronger than the one measured from scalp
channels. They suggest that ICA can be used for optimizing
brain-actuated control. In [3] ICA is used for analyzing EEG
data recorded from subjects which attempt to regulate power at
12 Hz over the left-right central scalp. Other studies use ICA
as a denoising technique or as a feature extractor for improving
the performance of a separate classifier. For example, in [4]
ICA is used to remove ocular artefacts, while [5] extracts
task-related independent components prior the application of
several classifiers. In contrast to these approaches, in [10] the
authors introduce a combination of Hidden Markov Models
and Independent Component Analysis as a generative model
of the EEG data and give a demonstration of how this model
can be applied directly to the detection of when switching
occurs between the two mental conditions of baseline activity
and imaginary movement.

Following a similar approach, in a recent work [2] we
have used directly a simple static ICA generative model of
EEG signals as a classifier for the recognition of three mental
tasks. We have shown that a performance similar to standard
approaches based on using temporal features as inputs to off-
the-shelf classifiers can be obtained. It is still an open question
whether we can do better by using a more complex model of
the data, since in [2] the temporal nature of the independent
components was not taken into account. Temporal modeling
of the hidden components, for example with autoregressive
models [9], has shown to improve separation in the case of
other types of recordings.

In this paper we further investigate the use of ICA for
classification by modeling each hidden component with an
autoregressive process. Our interest is to asses performance in
experiments which are close to the real use of a BCI system.
Rather than using a synchronous protocol, in our system the
subject performs repetitive movements and word generation in
a self-paced manner, without being synchronized to an external
cue.
Our approach is to fit, for each person, an ICA generative
model to each separate task, and then use Bayes’ rule to
form directly a classifier. This model will be compared with
its static special case, where no temporal information is
taken into account, and with two standard techniques for the
recognition of mental tasks: the Multilayer Perceptron (MLP)



and Support Vector Machine (SVM) [1], trained with power
spectral density features.

II. GENERATIVE TEMPORAL INDEPENDENT COMPONENT

ANALYSIS

Generative Independent Component Analysis is a proba-
bilistic model in which a vector of observations vt is assumed
to be generated by statistically independent (hidden) random
variables ht via an instantaneous linear transformation:

vt = Wht + εt ,

where εt is noise. For reasons of tractability, in our model
(and others in the literature) εt will be assumed to be zero
throughout, and W will be assumed to be a square matrix.

Like in Contextual ICA [9] and HMMICA [10], we as-
sume temporal dependence between the hidden variables ht

by modeling the ith hidden brain process hi
t with a linear

autoregressive model of order p:

hi
t =

p
∑

k=1

ai
khi

t−k + ηi
t = ĥi

t + ηi
t ,

where ηi
t is the noise term. Graphically, the Bayesian network

which corresponds to this model is shown in Fig. 1.
Our aim will be to fit a model of the above form to each class
of task c. In order to do this, we will describe the model as a
joint probability distribution, and use maximum likelihood as
the training criterion.
Given the above assumptions, we can factorize the density of
the observed and hidden variables as follow1:

p(v1:T , h1:T |c) =

T
∏

t=1

p(vt|ht, c)

H
∏

i=1

p(hi
t|h

i
t−1:t−p, c) . (1)

Using p(vt|ht) = δ(vt−Wht) we can easily integrate (1) over
the hidden variables ht to form the likelihood of the observed
sequence v1:T :

p(v1:T |c) = | det Wc|
−T

T
∏

t=1

H
∏

i=1

p(hi
t|h

i
t−1:t−p, c) , (2)

where ht = W−1

c vt.
We will model p(hi

t|h
i
t−1:t−p, c) with the generalized expo-

nential distribution:

p(hi
t|h

i
t−1:t−p, c) =

f(αic)

σic
exp

(

− g(αic)
∣

∣

∣

hi
t − ĥi

t

σic

∣

∣

∣

αic
)

,

where

f(αic) =
αicΓ(3/αic)1/2

2Γ(1/αic)3/2
, g(αic) =

(Γ(3/αic)

Γ(1/αic)

)αic/2

and Γ(·) is the Gamma function. The generalized exponential
family encompasses many types of symmetric and unimodal
distributions. The parameter σ is the standard deviation2, while
α determines the sharpness of the distribution, as shown in

1This is a slight abuse for reasons of notational simplicity. The model is
only defined for t > p. This is true for all subsequent dependent formulae.

2Due to the indeterminacy of variance of the hi (hi can be multiplied by
a scaling term a as long as the corresponding column of Wc is multiplied by
1/a), σ could be set to one in the general model described above. However
this cannot be done in the constrained version Wc = W considered in the
experiments (see Sec. III).
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Fig. 1. Graphical representation of our ICA model.

Fig. 2. Generalized exponential distribution for α = 2 (solid line), α =

1 (dashed line) and α = 1000000 (dotted line), which corresponds to a
Gaussian, Laplacian and uniform distribution respectively.

Fig. 2.
The logarithm of the likelihood (2) is summed over all training
sequences belonging to each class and then maximized by
using the scaled conjugate gradient method described in [1].
This requires computing the derivatives with respect to all the
parameters, that is, the mixing matrix Wc, the autoregressive
coefficients ai

k, and the parameters of the exponential distri-
bution σic and αic (see APPENDIX).
After training, a novel test sequence v∗

1:T is classified using
Bayes’ rule p(c|v∗

1:T ) ∝ p(v∗
1:T |c), assuming p(c) is uniform.

III. EXPERIMENTAL SETUP

EEG potentials were recorded with the Biosemi ActiveTwo
system (http://www.biosemi.com), using 32 electrodes located
at standard positions of the 10-20 International System, at a
sample rate of 512 Hz. The raw potentials were re-referenced
to the Common Average Reference in which the overall mean
is removed from each channel. Subsequently, the band 6-16 Hz
was selected with a Butterworth filter. This preprocessing filter
is a simple way to remove strong drift terms in the signals (the
so-called DC level) and the 50 Hz noise, which are artifacts
of instrumentation and do not correspond to brain activity.
Experimentally, we also found that removing frequencies
outside the band 6-16 Hz robustified the performance. Only
the following 19 electrodes were considered for the analysis:
F3, FC1, FC5, T7, C3, CP1, CP5, P3, Pz, P4, CP6, Cp2, C4,
T8, FC6, FC2, F4, Fz and Cz.

The data were acquired in an unshielded room from two
healthy subjects without any previous experience with BCI
systems. During an initial day the subjects learned how to
perform the mental tasks. In the following two days, 10
recordings, each lasting around 4 minutes, were acquired for
the analysis. During each recording session, every 20 seconds
an operator instructed the subject to perform one of three



different mental tasks. The tasks were: (1) imagination of self-
paced left, (2) right hand movement and (3) mental generation
of words starting with a given letter.

IV. RESULTS

The time series obtained from each recording session was
split into segments of signal lasting one second. ICA was
compared with two standard approaches, in which for each
segment the power spectral density was extracted and then pro-
cessed using an MLP and a SVM. The best performance was
obtained using the following Welch’s periodogram method:
each pattern was divided into a quarter of second long win-
dows with an overlap of 1/8 of second. Then the overall
average was computed.

The first three sessions of each day were used for training
the models while the other two sessions where used alterna-
tively for validation and testing.
A softmax, one hidden layer MLP was trained using cross-
entropy, with the validation set used to choose the number of
iterations, the number of tanh hidden units (ranging from 1
to 100) and the learning rate of the gradient ascent method.
In the SVM, each class was trained against the others, and
the standard deviation for the Gaussian SVM found using the
validation set (ranging from 1 to 20000).
In the ICA model, for computational expediency only, the data
were down-sampled from 512 to 64 samples per second. The
validation set was used to choose the number of conjugate
gradient iterations and the order p of the autoregressive model
(from 1 to 8), even if we have observed that the appropriate
order does not change for different sessions. Since we assume
that the scalp signal is generated by linear mixing of sources
in the cortex, provided the data are acquired under the same
conditions, it would seem reasonable to further assume that
the mixing is the same for all classes (Wc ≡ W ) and this
constrained version is also considered.

A comparison of the performance is shown in Table I.
Besides the results obtained with the Temporal ICA model
(T. ICA), in which the independent components are modeled
by an autoregressive process, we present the results obtained
with a Static ICA model (S. ICA), which can be seen as a
particular case in which the autoregressive order p is set to
zero. Classification is measured on around 420 test examples.
ICA consistently performs as well as the temporal feature
approach using MLP and SVMs. However, by modeling the
independent components with an autoregressive process we
don’t obtain improvements in discrimination with respect to
the static case.

For Subject A, we used the third day’s data to select
the three hidden components whose distribution varied most
across the three classes, using the ICA model with a matrix
W common to all classes. In the Static ICA model, the
three components were selected by looking at the distribution
p(hi

t), while in the Temporal ICA model they were selected
by looking at the conditional distribution p(hi

t|h
i
t−1:t−p) for

the order p that gave the best performance in the test set.
The projection of each component on the 19 scalp electrodes
(ith column of W ) gives an indication of which part of the

TABLE I

CLASSIFICATIONS ERRORS FOR THREE MENTAL TASKS USING STATIC

ICA, TEMPORAL ICA, MLP AND SVM. Wc USES A SEPARATE MATRIX

FOR EACH CLASS, AS OPPOSED TO A COMMON MATRIX W .

Subject A Subject B
Day 2 Day 3 Day 2 Day 3

S. ICA W 40.0% 34.8% 28.5% 31.5%
T. ICA W 40.2% 36.7% 27.8% 30.8%
S. ICA Wc 37.1% 36.0% 25.6% 30.8%
T. ICA Wc 38.8% 36.2% 27.1% 28.2%

MLP 37.1% 38.1% 30.5% 34.2%
SVM 35.1% 38.1% 32.4% 36.6%

scalp received more activity from that component. The scalp
projections and time courses (300 frames of the word task) of
the selected hidden components are shown in Fig. 3. As we can
see from the projections, there is a correspondence between
the static components (s1, s2, s3) and temporal components
(t1, t2, t3). The time courses are also very similar. In general
we have found a high correspondence among almost all the
19 components of the Static and Temporal ICA model. The
components for which a correspondence was not found don’t
show differences in the autoregressive coefficients and in the
conditional distribution, thus are not relevant for discrimina-
tion. Finally note that the hidden components found by the
Temporal ICA don’t look smoother as we would expect.
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Fig. 3. Projection on the scalp of three hidden components for Subject
A, Day 3 using Static ICA (Comp. s1, Comp. s2, Comp. s3) and Temporal
ICA (Comp. t1, Comp. t2, Comp. t3) (From blue to red, negative to positive
values). The topographic plots have been obtained by interpolating the
values at the electrode (black dots) using the open source eeglab toolbox
(http://www.sccn.ucsd.edu/eeglab). Below the projections, time courses (300
frames) of the corresponding hidden components. Due to the indeterminacy
of variance of the hidden components, axes scale between different figures
cannot be compared and has been removed. This also applies to the absolute
scalp projection.



V. CONCLUSIONS

In this work we have presented a preliminary analysis
on the use of a simple temporal Independent Component
Analysis model for the discrimination of three mental tasks
for asynchronous EEG-based BCI systems. Unlike standard
static ICA, which assumes temporal independence of the
hidden components, we have modeled each component
with an autoregressive process. While this approach has
been successfully applied to the separation of sources not
well separable using static ICA, it does not seem to bring
additional discriminant information when ICA is used as a
generative model for direct classification. The reason may
be that a simple linear model is not suitable for our EEG
data, due to strong non-stationarity in the hidden dynamics.
It may be more appropriate to use a switching model which
can handle changes of regime in the EEG dynamics.

ACKNOWLEDGMENT

The authors would like to acknowledge Dr. S. Bengio and
C. Dimitrakakis for useful discussions.

APPENDIX

Here we write the normalized log-likelihood of a set of

L(c) =
1

Sc(T − p)

Sc
X

s=1

log p(vs
p+1:T |h

s
1:p, c) ,

where s indicates the sth training pattern of class c. We write
p(vs

p+1:T |h
s
1:p, c), rather than the notational abuse p(vs

1:T |c) in the
main text, since this takes care of the initial time steps which would
otherwise be problematic. In the following, hs

t = W−1
c vs

t , for
t = 1, . . . , T . We want to maximize L =

P

c
L(c). Dropping the

pattern index s, the component index i and the class index c we have:

∂L

∂σ
= −

1

σ
+

g(α)αsign(σ)

S(T − p)|σ|α+1

S
X

s=1

T
X

t=p+1

|ht − ĥt|
α ,

that is the maximum likelihood solution is:

|σ|α =
g(α)α

S(T − p)

S
X

s=1

T
X

t=p+1

|ht − ĥt|
α .

Using this solution we obtain:

∂L

∂α
=

1

α
+

1

α2

Γ(1/α)′

Γ(1/α)
+

1

α2
log

“α
PS

s=1

PT

t=p+1
|ht − ĥt|

α

S(T − p)

”

−

PS

s=1

PT

t=p+1
|ht − ĥt|

α log |ht − ĥt|

α
PS

s=1

PT

t=p+1
|ht − ĥt|α

.

Setting A = W−1:

∂L

∂A
= −

1

S(T − p)

S
X

s=1

T
X

t=p+1

btv
′

t +
1

S(T − p)

S
X

s=1

T
X

t=p+1

B̂t

+ (A′)−1 ,

where bt is a vector of elements

bi
t =

g(αi)

|σi|α
i
αisign(hi

t − ĥi
t)|h

i
t − ĥi

t|
αi

−1

and B̂t is a matrix of rows

B̂i
t =

g(αi)

|σi|α
i
αisign(hi

t − ĥi
t)|h

i
t − ĥi

t|
αi

−1

p
X

k=1

ai
kv′

t−k .

Finally, the derivative with respect to the autoregressive coefficient
ak is:

∂L

∂ak

=
g(α)

S(T − p)|σ|α
α

S
X

s=1

T
X

t=p+1

sign(ht − ĥt)|ht − ĥt|
α−1ht−k .
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