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Abstract

We consider a model to cluster the components of a vec-
tor time-series. The task is to assign each component of the
vector time-series to a single cluster, basing this assignment
on the simultaneous dynamical similarity of the component
to other components in the cluster. This is in contrast to the
more familiar task of clustering a set of time-series based on
global measures of their similarity. The model is based on
a Dirichlet Mixture of Linear Gaussian State-Space models
(LGSSMs), in which each LGSSM is treated with a prior to
encourage the simplest explanation. The resulting model is
approximated using a ‘collapsed’ variational Bayes imple-
mentation.

1 Introduction

Consider a V -dimensional time-series v ≡ {v1, . . . , vT }
where, at each time t, vt denotes a vector having compo-
nents vi

t, i = 1, . . . , V . This paper addresses the task of
clustering the component time-series1 vi based on their si-
multaneous dynamical similarity, see Fig 1. We are inter-
ested in the case in which the number of clusters is not
known in advance, and therefore in a model which can auto-
matically determine an appropriate number of clusters. To
prevent overfitting, we would also like to encourage each
cluster to be described by a parsimonious parameterization.

To achieve these desiderate, we use a form of Dirichlet
Mixture of Bayesian Linear Gaussian State-Space models.
A Gaussian prior is used to encourage the model to have
the smallest parameterization consistent with the data, and
a Polya distribution is used on the assignments to determine
an appropriate number of clusters. In our model, output
components are assigned to the same cluster if generated by
the same realization of a linear Gaussian dynamical process.

1For ease of notation, we will consider only a single time-series, al-
though the generalization carries over naturally to a set of time-series.
Similarly, we consider grouping only scalar outputs, although splitting the
vector v into a set of sub-vectors and clustering these is a straightforward
extension.

on their simultaneous component similarity.

t

v

Clustering a set of time-series based on their glo bal similarity

Clustering components of a vector time-series based

Figure 1. (Top) Time-series clustering based
on simultaneous activity, versus (Below)
clustering based on global similarity.

An alternative, and perhaps more familiar clustering
task, is to assign two outputs to the same cluster when gen-
erated by a different realization of the same linear Gaussian
dynamical process. In such a viewpoint, clustering would
not be based on the simultaneous behavior of the compo-
nents of the vector, but rather on a measure of the global
similarity of the components. For a depiction of this key
difference, see Fig 1.

The paper is organized as follows: In the next section we
recall the basic theory of the LGSSM, which will be mar-
ried with the Dirichlet Mixture Model in Section 3. A toy
demonstration of the method is given in Section 4. Fuller
technical details and derivations are to be found in [1],
which discusses in addition alternative clustering models.

2 Linear Gaussian State-Space Models

In a Linear Gaussian State-Space Model2[2] a sequence of
observations v ≡ {v1, . . . , vT }, vt ∈ <V , is generated ac-
cording to a latent Markovian linear dynamical system on
states h ≡ {h1, . . . hT }, ht ∈ <H :

vt = Bht + ηv
t , ηv

t ∼ N (ηv
t |0V ,ΣV ),

ht = Aht−1 + ηh
t , ηh

t ∼ N
(
ηh

t |0H ,ΣH

)
, (1)

where N (x|µ,Σ) denotes a Gaussian in variable x with
mean µ and covariance Σ, and 0X denotes an X-

2This model is also called a Linear Dynamical System. We prefer not
to use the terminology Kalman Filter/Smoother since this refers to a par-
ticular kind of inference on a LGSSM.
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chosen latent system. The projection matrix depends
on the output component, but not the latent compon ent.

Each visible scalar is formed by the linear projec tion of a 

K independent latent dynamical components of dimension H
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Figure 2. Output clustering based on indepen-
dent latent dynamical systems.

dimensional zero vector. A probabilistic description of this
model is

p(v, h|Θ) =
T∏

t=1

p(vt|ht,Θ)p(ht|ht−1,Θ),

where we define the transitions

p(ht|ht−1,Θ) ≡ N (ht|Aht−1,ΣH) (2)

and emissions

p(vt|ht,Θ) ≡ N (vt|Bht,ΣV ) .

The dynamics is initialized with p(h1|h0) ≡ N (h1|µ,Σ).
The combined set of parameters of the model is denoted
with Θ = {A,B, ΣH ,ΣV , µ,Σ}. Since the model is a
simple pairwise Markov Gaussian chain, most quantities of
interest, such as the posterior density p(ht|v,Θ), posterior
entropy of h and likelihood p(v|Θ) =

∫
h

p(v, h|Θ) can be
computed efficiently in O(T ) operations[2].

3 Dirichlet Mixture of Bayesian LGSSMs

Our model assumes the presence of a set of K latent dynam-
ical systems h1, . . . , hK , each precessing independently ac-
cording to

p(hk
t |hk

t−1) ≡ N
(
hk

t |Akhk
t−1,Σ

k
H

)
as in Eq. (2). Dynamical system k projects to a subset of the
visible components, forming a linear mixing of the states hk

t

to produce the outputs associated with component k. In this
way, we form a partition of the outputs into groups: within
group k the outputs are dependent and can be explained by
the kth linear dynamical system.

The key ingredient is to introduce an indicator variable
zi ∈ {1, . . . ,K} which assigns each output vi to a partic-
ular cluster latent dynamics hk (see Fig 2). This will be
achieved by

p(vi|h, zi = k) = p(vi|hk).

Each output component is therefore assigned to a single
cluster, although each hk is potentially responsible for sev-
eral outputs.

In a standard mixture model, the indicators zi are inde-
pendent. However, in the Dirichlet mixture case, we specify
a joint distribution on the variables z =

{
z1, . . . , zV

}
to en-

courage the components of the mixture to be used in a parsi-
monious fashion, enabling the model to automatically iden-
tify a reasonable number of clusters[3]. Furthermore, we
place a Bayesian prior on the parameters of each LGSSM
to bias each dynamical system into its simplest form.

The joint density on all variables (dropping the hyperpa-
rameters from the notation) is given by:

p(v, z, h,Θ) = p(z)p(Θ)p(v|h, z,Θ)p(h|Θ).

This is composed of the LGSSM emission p(v|h, z,Θ),
transitions p(h|Θ), parameter prior p(Θ) and joint indica-
tor prior p(z). We will consider each term in more detail
below.

Indicator Prior p(z)

To model the joint cluster allocations we define

p(z) =
∫

π

{∏
i

p(zi|π)

}
p(π), (3)

where p(zi = k|π) ≡ πk is a multinomial distribution. Us-
ing the Dirichlet as the multinomial conjugate prior3

p(π) ∝
K∏

k=1

π
γ/K−1
k ,

the integral in Eq. (3) gives rise to the Polya distribution:

p(z) =
Γ(γ)

Γ(V + γ)

K∏
k=1

Γ(Vk + γ/K)
Γ(γ/K)

, (4)

where

Vk ≡
V∑

i=1

I[zi = k] (5)

counts the number of times that state k occurs in the indica-
tors4. In the limit of infinite K, the prior expected number
of clusters for a set of V outputs is [4]

V∑
i=1

γ

γ + i− 1
≈ γ log

(V

γ
+ 1

)
.

Whilst it is possible to optimize the marginal likelihood
with respect to γ, in our experiments we typically set γ to
around the maximum number of possible clusters5.

In our work, we will consider K to be finite. This is
in contrast to Dirichlet Process Mixture Models[3, 5, 6], in
which the K → ∞ limit is formally taken. This can be

3The scaling γ/K ensures a sensible limit as K →∞.
4I[a = b] = 1 if a = b and 0 otherwise.
5The distribution of the number of clusters is heavily skewed, which

creates a bias towards using few clusters.



achieved, for example, by writing down a sampling algo-
rithm for the finite dimensional case, and then taking the
limit K → ∞. If the sampler is initialized with a small
number of clusters, the sampling algorithm will generate at
times new clusters until sufficiently many are present to ex-
plain the data well. This is the origin of the Chinese Restau-
rant Process interpretation of the Dirichlet Process (see, for
example [7]). In practice, since only a finite number of mix-
ture components is effectively used, we prefer the finite K
case. An advantage of this is that we retain an explicit ex-
pression for the marginal likelihood which is then amenable
to fast deterministic approximation schemes.

LGSSM Emissions p(v|z, h,Θ)

The emission term, which is central to clustering, is

p(v|z, h,Θ) =
V∏

i=1

p(vi|h, zi,Θ).

When zi is in state k, the dynamics of the kth latent state is
projected to the observation:

p(vi
t|ht, z

i = k, Θ) ≡ N
(
vi

t|Bihk
t , [ΣV ]ii

)
,

where Bi ≡ Bi,· is a 1 × H vector. Each time point con-
tributes independently, giving:

p(vi|h, zi = k, Θ) =
∏

t

N
(
vi

t|Bihk
t , [ΣV ]ii

)
.

Hence zi = k has the effect of assigning output i to dynam-
ical system k.

LGSSM Transitions p(h|Θ)

The transitions term is given by

p(h|Θ) =
K∏

k=1

p(hk|Θk).

Each of the K linear dynamical systems proceeds indepen-
dently of the rest under the usual LGSSM Markovian dy-
namics (see Eq. (1))

p(hk|Θk) =
∏

t

p(hk
t |hk

t−1,Θ
k).

LGSSM Parameter Prior p(Θ)

The covariances are taken to be diagonal and parameterized,
for convenience, via their inverses

Σk
H = diag(

[
τk

]−1
), ΣV = diag(ρ−1),

where each diagonal element follows a Gamma distribution

p(τk
i ) = Gamma(τk

i |a1, a2), p(ρi) = Gamma(ρi|b1, b2).

We fix a1, a2, b1, b2 to achieve broad priors. To bias the
transition parameters to preferred values, we use a set of
Gaussian priors

p(Ak|αk, τk) ∝
H∏

i,j=1

e−
αk

ijτk
i

2 (Ak
ij−Āk

ij)
2

and for the emissions

p(B|β, ρ) ∝
V,H∏
i,j=1

e−
βijρi

2 (Bij−B̄ij)2

.

Here Āk and B̄ are the preferred values of Ak and B, and
αk and β are the corresponding matrices of hyperparame-
ters.

3.1 Variational Bayes Approximation

The goal of learning is to find the optimal hyperparameters
Θ̂ = {α, β} with respect to the marginal likelihood

p(v|Θ̂) =
∫

z,h,Θ

p(v|h, z,Θ)p(h|Θ)p(z)p(Θ|Θ̂).

In addition, once optimized, we wish to examine the
marginal posterior p(zi|v, Θ̂) to assess the cluster assign-
ments.

However, computing the marginal likelihood p(v|Θ̂) is
computationally intractable, and we resort to a determinis-
tic approximation, a form of ‘collapsed’ Variational Bayes
(VB) procedure6[8]. We assume that the posterior has an
approximate factorization

p(h, z,Θ|v) ≈ q(h)q(z)q(Θ)

where we further assume the factorized forms

q(z) ≡
∏

i

q(zi), q(h) ≡
∏
k

q(hk), q(Θ) ≡
∏
k

q(Θk).

Taking the Kullback-Leibler divergence[9]

KL(q(h)q(z)q(Θ)||p(h, z,Θ|v))

yields a lower bound on log p(v|Θ̂) given by∑
k

Hq(hk) +
∑

i

Hq(zi) +
∑

k

Hq(Θk)

+
∑
i,t

〈
log p(vi

t|ht, z
i,Θ)

〉
q(zi)q(ht)q(Θ)

+
∑
t,k

〈
log p(hk

t |hk
t−1,Θ

k)
〉

q(hk)q(Θk)

+ 〈log p(z)〉Q
i q(zi) +

∑
k

〈
log p(Θk|Θ̂k)

〉
q(Θk)

,

6In the ‘uncollapsed’ procedure, one retains the Dirichlet variable π
as part of the joint distribution and introduces an additional factorization
q(z)q(π). This is seductive since it renders an approximation easy to com-
pute. However, the explicit decoupling of z and π in the approximation
makes the method practically too inaccurate[8].



where Hq(x) denotes the entropy of the distribution q(x)
and 〈φ〉q denotes expectation of φ with respect to q. VB
then proceeds by iteratively maximizing the lower bound
with respect to the q distributions for fixed hyperparame-
ters Θ̂ and vice-versa until no further improvement is found.
The forms of the resulting updates for q and Θ̂ are sketched
in the appendix. Full details are to be found in [1]. At con-
vergence, we may read off approximations to the marginal
indicator posteriors p(zi|v, Θ̂) ≈ q(zi) to assess which out-
puts are clustered together.

This results in a general algorithm that can be used to
cluster time-series outputs based on their simultaneous dy-
namical similarity. We will demonstrate an application of
this technique in Section 4.

Relation to Previous Work

Variational Bayes has been applied to LGSSMs in a variety
of contexts, ranging from acoustics[10] to gene-expression
analysis[11]. Particularly in the analysis of short sequences
of gene-expression profiles, the use of strong prior infor-
mation to sparsify the model is crucial in obtaining plau-
sible results[11]. In [12], a procedure for making the im-
plementation of VB to the LGSSM straightforward and nu-
merically stable was discussed. This has the advantage
that off-the-shelf inference procedures such as the standard
predictor-corrector algorithm[2] can be used directly with
the Bayesian LGSSM.

The model discussed in Section 3 extends the Bayesian
LGSSM to a mixture model. Whilst the setting of out-
put clustering is special, other works have addressed the
more frequently considered case of clustering a set of time-
series (see Fig 1) based on mixtures of linear dynamical
systems. Works using the simpler autoregressive models
include [13], which uses a mixture of ARMA models, with
the number of mixtures determined by the BIC criterion. In
[14] specially constrained LGSSMs were used to form com-
ponents in a Dirichlet mixture; the authors used a Bayesian
prior to encourage simplicity of each LGSSM. This model
is similar to ours – however this is a form of clustering a set
of time-series, and not the outputs (see the distinction in Fig
1). Furthermore, sampling in this model is slow, since com-
puting the likelihood of the LGSSM requires O(T ) opera-
tions, so a single MCMC update is O(T ). This model can
be seen as an extension of [5], which discusses a sampling
approach for a Dirichlet Process Mixture of Factor Analyz-
ers. Sampling in this model is also computationally expen-
sive, so that the method is prohibitive for large datasets and
also large observation vectors.

4 Demonstration

As a simple illustration of our output clustering method, in
Fig 3 we plot a set of V = 6 output sequences which were
generated by projecting from two independent linear sys-
tems of dimension H = 6. We trained our model on this
data, assuming K = 4 latent linear dynamical systems,

Figure 3. Output clustering. Our model cor-
rectly identifies two clusters, assigning the
top three output sequences to one cluster and
the bottom three to another.

each of dimension H = 8. We set the parameter biases
Ā and B̄ to zero in order to encourage the simplest latent
transition and emissions to be discovered[15]. The Polya
parameter γ in Eq. (4) was set to 10.

Pleasingly, the method correctly discarded two of the un-
needed clusters, and identified the first three outputs (from
top to bottom) as belonging to cluster 1, and the bottom
three as belonging to cluster 2, consistent with the way the
data was generated. In addition, the initial over parameteri-
zation of the latent systems was reduced from 8 to 6, as can
be seen in Fig 4, where each emission Bi (corresponding to
a row in the matrix) has at least two zeros, indicating that
the effective dimensionality that contributes to the model is
at most 6 for each of the latent systems.

As in all mixture model clustering techniques, some care
is required in using sensible initializations. Whilst this is
a highly problem specific issue, we generally found that
initializing the mean transition matrices to the identity and
the transition noise ΣH to be small helped the model more
rapidly learn reasonable latent representations hk. This ini-
tialization renders the model similar to a Mixture of Factor
Analyzers[5] in the initial training phase, after which the
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Figure 4. Posterior mean of Bij (i = 1, . . . , V ,
j = 1, . . . ,H). The Bayesian prior has reduced
each latent dimension H from 8 to 6.



dynamics of the latent representations emerge.
Throughout our experiments, we found that the marginal

likelihood bound is generally a reliable measure of clus-
tering quality, provided that we consider models from the
same class. However, for two models with different param-
eterizations (K, H values), one cannot always rely on their
corresponding likelihood bounds to determine which model
performed best. There are potentially several reasons why
this may be the case, bearing in mind that the bound is only
an approximation of the true marginal likelihood. Indeed, a
point often overlooked in the literature is that the likelihood
approximation, since it will typically approximate a single
mode of the posterior, will miss K! modes in the equiva-
lence class defined by permuting the cluster labels. How-
ever, this correction alone cannot always account for the
sometimes poor quality of the bound as a relative perfor-
mance criterion across models. It might be that in difficult
cases the factorization between parameters and latent states
explicit in the Variational Bayes approximation is too crude
to accurately capture the mass of the posterior. Similar po-
tential difficulties with the Variational Bayes method have
previously been reported[16].

5 Conclusion

We introduced a method to cluster output sequences based
on their simultaneous dynamical activity. Our method is
based on the assumption that the data clusters have an un-
derlying latent dynamical representation. Whilst this is cer-
tainly not always the case, we believe that this may be rea-
sonable in a large variety of applications in the physical sci-
ences. We are currently applying our method to sequence
clustering in biosignal analysis, refining the model to en-
code more specific prior knowledge of the system dynam-
ics.

Full details and code are available from [1].
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A Variational Updates

Variational Bayes iterates between updating the variational
approximating distributions q(h), q(z), q(Θ) and the hyper-
parameters Θ̂. Below we simply sketch the structure of the
these updates. Full details and derivations are given in [1].

Indicator Updates

q(zi = k) ∝ e
〈log p(zi=k|z¬i)〉

q(z¬i)

× e
P

t〈log p(vi
t|h

k
t ,Θ)〉

q(hk
t )q(Θ) .

The first term in the exponent p(zi = k|z¬i) is the prob-
ability of zi = k conditioned on all remaining variables

excluding zi. The average
〈
log p(zi = k|z¬i)

〉
q(z¬i)

needs
attention since, naively, p(zi = k|z¬i) possesses little struc-
ture to enable the average to be tractable. Whilst the naive
exponential complexity can be reduced, we employ the sec-
ond order Taylor expansion approximation of [8], as fol-
lows. Explicitly,

p(zi = k|z¬i) =
Vk,¬i + γ/K

V − 1 + γ
≡ f(Vk,¬i), (6)

where Vk,¬i ≡ Vk − I[zi = k] is the number of times z is
in state k, excluding zi. The quantities Vk,¬i are sums of
Bernoulli variables and may be approximated with a Gaus-
sian with mean and variance given by:

Mk,¬i ≡
V∑

j=1,j 6=i

q(zj = k)

Sk,¬i ≡
V∑

j=1,j 6=i

q(zj = k)(1− q(zj = k)).

We then approximate 〈f(Vk,¬i)〉 in Eq. (6) by using a sec-
ond order Taylor expansion7:

〈f(Vk,¬i)〉 = f(Mk,¬i) +
1
2
f ′′(Mk,¬i)Sk,¬i.

Latent Posterior q(hk) Updates

q(hk) ∝ e
P

i,t q(zi=k)〈log p(vi
t|ht,z

i=k,Θ)〉
q(Θ)

× e
P

t〈log p(hk
t |h

k
t−1,Θk)〉

q(Θk) . (7)

This term is closely related to a standard VB approximation
to a Bayesian LGSSM [10, 11, 12]. Clearly the structure of
q(hk) is a pairwise Markov chain, and inference algorithms
such as Belief Propagation[11, 10] can be used. However,
we take the approach discussed in [12] which reformulates
the problem such that standard LGSSM inference routines
can be applied. This both simplifies the development and
can be advantageous in regimes of numerical instability.
The central idea is to write terms such as

− 2q(zi = k)
〈
log p(vi

t|ht, z
i = k, Θ)

〉
q(Θ)

=

q(zi = k)
〈(

vi
t −Bih

k
t

)T
ρi

(
vi

t −Bih
k
t

)〉
+ const.

as a decomposition consisting of a ‘mean’ term

q(zi = k)
(
vi

t − 〈Bi〉hk
t

)T 〈ρi〉
(
vi

t − 〈Bi〉hk
t

)
(8)

and ‘fluctuation’ term (
hk

t

)T
Sk

Bi
hk

t ,

where Sk
Bi

is the covariance of q(zi = k)Bi
TρiBi. The

analytical expression for this covariance is given in [1] and,
7The potentially more accurate procedure of using Quadrature fails in

this case, since the arguments under Gaussian Quadrature take the function
out of defined regions.



crucially, does not explicitly involve ρi. The mean term Eq.
(8) represents the contribution of a standard LGSSM with
parameters B replaced by their average values and a change
to the emission covariance. Similarly, we can apply this
decomposition to the transition terms

〈
log p(hk

t |hk
t−1,Θ

k)
〉

in Eq. (7).
The key observation is to consider the extra ‘fluctuation’

terms as having been generated from fictitious zero-valued
observations (0 − (

∑
i Sk

Bi
)

1
2 hk

t )T(0 − (
∑

i Sk
Bi

)
1
2 hk

t ).
Hence, by augmenting the LGSSM with fictitious outputs
and adjusting the emissions, we can reformulate Eq. (7) as
the posterior of a standard LGSSM, for which any of the
standard algorithms in the literature[2] may be applied to
perform inference of q(hk

t ) and related quantities. A slight
modification of the standard algorithm produces a more ef-
ficient procedure obviating the need to introduce fictitious
outputs[12].

LGSSM Parameter Updates

The parameter updates are straightforward. For example,
the prior on p(Ak, τk|α̂k) is a multivariate Normal-Gamma
distribution which gives rise to a Normal-Gamma posterior
approximation q(Ak, τk) of the form:

q(Θk) ∝ p(Θk|Θ̂k)e
P

t〈log p(hk
t |h

k
t−1,Θk)〉

q(hk)
.

A similar update occurs for B and ρ.

Hyperparameter Updates

Assuming a hyperparameter βij for each element of the ma-
trix Bij to bias it towards a desired value B̄ij , and taking
the derivative of the bound with respect to βij , we obtain
the fixed point condition

1
βij

=
〈
ρi(Bij − B̄ij)2

〉
q(B,ρ)

.

The averages are analytically available from [1]. Similarly,
we have a bias for each Ak

ij towards a desired Āk
ij . The

fixed point condition is then given by

1
αk

ij

=
〈
τk
i (Ak

ij − Āk
ij)

2
〉

q(Ak,τk)
.
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