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Abstract

Linear Gaussian State-Space Models are widely used and a Bayesian treatment
of parameters is therefore of considerable interest. The approximate Variational
Bayesian method applied to these models is an attractive approach, used success-
fully in applications ranging from acoustics to bioinformatics. The most challeng-
ing aspect of implementing the method is in performing inference on the hidden
state sequence of the model. We show how to convert the inference problem so
that standard Kalman Filtering/Smoothing recursions from the literature may be
applied. This is in contrast to previously published approaches based on Belief
Propagation. Our framework both simplifies and unifies the inference problem, so
that future applications may be more easily developed. We demonstrate the ele-
gance of the approach on Bayesian temporal ICA, with an application to finding
independent dynamical processes underlying noisy EEG signals.

1 Linear Gaussian State-Space Models

Linear Gaussian State-Space Models (LGSSMs)1 are fundamental in time-series analysis [1, 2, 3].
In these models the observations v1:T

2 are generated from an underlying dynamical system on h1:T

according to:

vt = Bht + ηv
t , ηv

t ∼ N (0V , ΣV ), ht = Aht−1 + ηh
t , ηh

t ∼ N (0H , ΣH) ,

where N (µ, Σ) denotes a Gaussian with mean µ and covariance Σ, and 0X denotes an X-
dimensional zero vector. The observation vt has dimension V and the hidden state ht has dimension
H . Probabilistically, the LGSSM is defined by:

p(v1:T , h1:T |Θ) = p(v1|h1)p(h1)
T∏

t=2

p(vt|ht)p(ht|ht−1),

with p(vt|ht) = N (Bht, ΣV ), p(ht|ht−1) = N (Aht−1, ΣH), p(h1) = N (µ, Σ) and where
Θ = {A, B, ΣH , ΣV , µ, Σ} denotes the model parameters. Because of the widespread use of these
models, a Bayesian treatment of parameters is of considerable interest [4, 5, 6, 7, 8].

An exact implementation of the Bayesian LGSSM is formally intractable [8], and recently a Varia-
tional Bayesian (VB) approximation has been studied [4, 5, 6, 7, 9]. The most challenging part of
implementing the VB method is performing inference over h1:T , and previous authors have devel-
oped their own specialized routines, based on Belief Propagation, since standard LGSSM inference
routines appear, at first sight, not to be applicable.

1Also called Kalman Filters/Smoothers, Linear Dynamical Systems.
2v1:T denotes v1, . . . , vT .



A key contribution of this paper is to show how the Variational Bayesian treatment of the
LGSSM can be implemented using standard LGSSM inference routines. Based on the insight we
provide, any standard inference method may be applied, including those specifically addressed to
improve numerical stability [2, 10, 11]. In this article, we decided to describe the predictor-corrector
and Rauch-Tung-Striebel recursions [2], and also suggest a small modification that reduces compu-
tational cost.

The Bayesian LGSSM is particularly of interest when strong prior constraints are needed to find
adequate solutions. One such case is in EEG signal analysis, whereby we wish to extract sources
that evolve independently through time. Since EEG is particularly noisy [12], a prior that encourages
sources to have preferential dynamics is advantageous. This application is discussed in Section 4,
and demonstrates the ease of applying our VB framework.

2 Bayesian Linear Gaussian State-Space Models

In the Bayesian treatment of the LGSSM, instead of considering the model parameters Θ as fixed,

we define a prior distribution p(Θ|Θ̂), where Θ̂ is a set of hyperparameters. Then:

p(v1:T |Θ̂) =

∫

Θ

p(v1:T |Θ)p(Θ|Θ̂) . (1)

In a full Bayesian treatment we would define additional prior distributions over the hyperparameters

Θ̂. Here we take instead the ML-II (‘evidence’) framework, in which the optimal set of hyperpa-

rameters is found by maximizing p(v1:T |Θ̂) with respect to Θ̂ [6, 7, 9].

For the parameter priors, here we define Gaussians on the columns of A and B3:

p(A|α, ΣH) ∝
H∏

j=1

e−
αj
2 (Aj−Âj)

T
Σ−1

H (Aj−Âj), p(B|β, ΣV ) ∝
H∏

j=1

e−
βj
2 (Bj−B̂j)

T
Σ−1

V (Bj−B̂j),

which has the effect of biasing the transition and emission matrices to desired forms Â and B̂. The
conjugate priors for general inverse covariances Σ−1

H and Σ−1
V are Wishart distributions [7]4. In the

simpler case assumed here of diagonal covariances these become Gamma distributions [5, 7]. The

hyperparameters are then Θ̂ = {α, β}5.

Variational Bayes

Optimizing Eq. (1) with respect to Θ̂ is difficult due to the intractability of the integrals. Instead, in
VB, one considers the lower bound [6, 7, 9]6:

L = log p(v1:T |Θ̂) ≥ Hq(Θ, h1:T ) +
〈

log p(Θ|Θ̂)
〉

q(Θ)
+ 〈E(h1:T , Θ)〉q(Θ,h1:T ) ≡ F ,

where

E(h1:T , Θ) ≡ log p(v1:T , h1:T |Θ).

Hd(x) signifies the entropy of the distribution d(x), and 〈·〉d(x) denotes the expectation operator.

The key approximation in VB is q(Θ, h1:T ) ≡ q(Θ)q(h1:T ), from which one may show that, for
optimality of F ,

q(h1:T ) ∝ e〈E(h1:T ,Θ)〉
q(Θ) , q(Θ) ∝ p(Θ|Θ̂)e〈E(h1:T ,Θ)〉q(h1:T ) .

These coupled equations need to be iterated to convergence. The updates for the parameters q(Θ)
are straightforward and are given in Appendices A and B. Once converged, the hyperparameters are

updated by maximizing F with respect to Θ̂, which lead to simple update formulae [7].

Our main concern is with the update for q(h1:T ), for which this paper makes a departure from
treatments previously presented.

3More general Gaussian priors may be more suitable depending on the application.
4For expositional simplicity, we do not put priors on µ and Σ.
5For simplicity, we keep the parameters of the Gamma priors fixed.
6Strictly we should write throughout q(·|v1:T ). We omit the dependence on v1:T for notational convenience.



3 Unified Inference on q(h1:T )

Optimally q(h1:T ) is Gaussian since, up to a constant, 〈E(h1:T , Θ)〉q(Θ) is quadratic in h1:T
7:

−
1

2

T∑

t=1

[
〈
(vt−Bht)

TΣ−1
V (vt−Bht)

〉

q(B,ΣV )
+

〈

(ht−Aht−1)
T
Σ−1

H (ht−Aht−1)
〉

q(A,ΣH )

]

.

(2)

In addition, optimally, q(A|ΣH) and q(B|ΣV ) are Gaussians (see Appendix A), so we can easily
carry out the averages in Eq. (2). The further averages over q(ΣH) and q(ΣV ) are also easy due
to conjugacy. Whilst this defines the distribution q(h1:T ), quantities such as q(ht), required for
example for the parameter updates (see the Appendices), need to be inferred from this distribution.
Clearly, in the non-Bayesian case, the averages over the parameters are not present, and the above
simply represents the posterior distribution of an LGSSM whose visible variables have been clamped
into their evidential states. In that case, inference can be performed using any standard LGSSM
routine. Our aim, therefore, is to try to represent the averaged Eq. (2) directly as the posterior
distribution q̃(h1:T |ṽ1:T ) of an LGSSM , for some suitable parameter settings.

Mean + Fluctuation Decomposition

A useful decomposition is to write
〈
(vt −Bht)

TΣ−1
V (vt −Bht)

〉

q(B,ΣV )
= (vt − 〈B〉 ht)

T
〈
Σ−1

V

〉
(vt − 〈B〉 ht)

︸ ︷︷ ︸

mean

+ hT
t SBht

︸ ︷︷ ︸

fluctuation

,

and similarly
〈
(ht−Aht−1)

TΣ−1
H (ht−Aht−1)

〉

q(A,ΣH )
= (ht−〈A〉ht−1)

T
〈
Σ−1

H

〉
(ht−〈A〉ht−1)

︸ ︷︷ ︸

mean

+hT

t−1SAht−1
︸ ︷︷ ︸

fluctuation

,

where the parameter covariances are SB ≡
〈
BTΣ−1

V B
〉
− 〈B〉T

〈
Σ−1

V

〉
〈B〉 = V H−1

B and SA ≡
〈
ATΣ−1

H A
〉
−〈A〉T

〈
Σ−1

H

〉
〈A〉 = HH−1

A (for HA and HB defined in Appendix A). The mean terms
simply represent a clamped LGSSM with averaged parameters. However, the extra contributions
from the fluctuations mean that Eq. (2) cannot be written as a clamped LGSSM with averaged
parameters. In order to deal with these extra terms, our idea is to treat the fluctuations as arising
from an augmented visible variable, for which Eq. (2) can then be considered as a clamped LGSSM.

Inference Using an Augmented LGSSM

To represent Eq. (2) as an LGSSM q̃(h1:T |ṽ1:T ), we may augment vt and B as8:

ṽt = vert(vt, 0H , 0H), B̃ = vert(〈B〉 , UA, UB),

where UA is the Cholesky decomposition of SA, so that UT
AUA = SA. Similarly, UB is the Cholesky

decomposition of SB . The equivalent LGSSM q̃(h1:T |ṽ1:T ) is then completed by specifying9

Ã ≡ 〈A〉 , Σ̃H ≡
〈
Σ−1

H

〉−1
, Σ̃V ≡ diag(

〈
Σ−1

V

〉−1
, IH , IH), µ̃ ≡ µ, Σ̃ ≡ Σ.

The validity of this parameter assignment can be checked by showing that, up to negligible constants,
the exponent of this augmented LGSSM has the same form as Eq. (2)10. Now that this has been
written as an LGSSM q̃(h1:T |ṽ1:T ), standard inference routines in the literature may be applied to
compute q(ht|v1:T ) = q̃(ht|ṽ1:T ) [1, 2, 11]11.

7For simplicity of exposition, we ignore the first time-point here.
8The notation vert(x1, . . . , xn) stands for vertically concatenating the arguments x1, . . . , xn.
9Strictly, we need a time-dependent emission B̃t = B̃, for t = 1, . . . , T − 1. For time T , B̃T has the

Cholesky factor UA replaced by 0H,H .
10There are several ways of achieving a similar augmentation. We chose this since, in the non-Bayesian limit

UA = UB = 0H,H , no numerical instabilities would be introduced.
11Note that, since the augmented LGSSM q̃(h1:T |ṽ1:T ) is designed to match the fully clamped distribution

q(h1:T |v1:T ), the filtered posterior q̃(ht|ṽ1:t) does not correspond to q(ht|v1:t).



Algorithm 1 LGSSM: Forward and backward recursive updates. The smoothed posterior p(ht|v1:T )

is returned in the mean ĥT
t and covariance PT

t .

procedure FORWARD

1a: P ← Σ
1b: P ← DΣ, where D ≡ I − ΣUT

AB

(
I + UABΣUT

AB

)−1
UAB

2a: ĥ0
1 ← µ

2b: ĥ0
1 ← Dµ

3: K ← PBT(BPBT + ΣV )−1, P 1
1 ← (I −KB)P , ĥ1

1 ← ĥ0
1 + K(vt −Bĥ0

1)
for t← 2, T do

4: P t−1
t ← AP t−1

t−1 AT + ΣH

5a: P ← P t−1
t

5b: P ← DtP
t−1
t , where Dt ≡ I − P t−1

t UT
AB

(
I + UABP t−1

t UT
AB

)−1
UAB

6a: ĥt−1
t ← Aĥt−1

t−1

6b: ĥt−1
t ← DtAĥt−1

t−1

7: K ← PBT(BPBT + ΣV )−1, P t
t ← (I −KB)P , ĥt

t ← ĥt−1
t + K(vt −Bĥt−1

t )
end for

end procedure
procedure BACKWARD

for t← T − 1, 1 do
←−
At ← P t

t AT(P t
t+1)

−1

PT
t ← P t

t +
←−
At(P

T
t+1 − P t

t+1)
←−
At

T

ĥT
t ← ĥt

t +
←−
At(ĥ

T
t+1 −Aĥt

t)
end for

end procedure

For completeness, we decided to describe the standard predictor-corrector form of the Kalman Fil-
ter, together with the Rauch-Tung-Striebel Smoother [2]. These are given in Algorithm 1, where
q̃(ht|ṽ1:T ) is computed by calling the FORWARD and BACKWARD procedures.

We present two variants of the FORWARD pass. Either we may call procedure FORWARD in

Algorithm 1 with parameters Ã, B̃, Σ̃H , Σ̃V , µ̃, Σ̃ and the augmented visible variables ṽt in which
we use steps 1a, 2a, 5a and 6a. This is exactly the predictor-corrector form of a Kalman Filter [2].
Otherwise, in order to reduce the computational cost, we may call procedure FORWARD with the

parameters Ã, 〈B〉 , Σ̃H ,
〈
Σ−1

V

〉−1
, µ̃, Σ̃ and the original visible variable vt in which we use steps

1b (where UT
ABUAB ≡ SA+SB), 2b, 5b and 6b. The two algorithms are mathematically equivalent.

Computing q(ht|v1:T ) = q̃(ht|ṽ1:T ) is then completed by calling the common BACKWARD pass.

The important point here is that the reader may supply any standard Kalman Filtering/Smoothing
routine, and simply call it with the appropriate parameters. In some parameter regimes, or in very
long time-series, numerical stability may be a serious concern, for which several stabilized algo-
rithms have been developed over the years, for example the square-root forms [2, 10, 11]. By
converting the problem to a standard form, we have therefore unified and simplified inference, so
that future applications may be more readily developed12.

3.1 Relation to Previous Approaches

An alternative approach to the one above, and taken in [5, 7], is to write the posterior as

log q(h1:T ) =

T∑

t=2

φt(ht−1, ht) + const.

for suitably defined quadratic forms φt(ht−1, ht). Here the potentials φt(ht−1, ht) encode the av-
eraging over the parameters A, B, ΣH , ΣV . The approach taken in [7] is to recognize this as a

12The computation of the log-likelihood bound does not require any augmentation.



pairwise Markov chain, for which the Belief Propagation recursions may be applied. The approach
in [5] is based on a Kullback-Leibler minimization of the posterior with a chain structure, which is
algorithmically equivalent to Belief Propagation. Whilst mathematically valid procedures, the re-
sulting algorithms do not correspond to any of the standard forms in the Kalman Filtering/Smoothing
literature, whose properties have been well studied [14].

4 An Application to Bayesian ICA

Figure 1: The structure of
the LGSSM for ICA.

A particular case for which the Bayesian LGSSM is of interest is in
extracting independent source signals underlying a multivariate time-
series [5, 15]. This will demonstrate how the approach developed in
Section 3 makes VB easily to apply. The sources si are modeled as
independent in the following sense:

p(si
1:T , s

j
1:T ) = p(si

1:T )p(sj
1:T ), for i 6= j, i, j = 1, . . . , C.

Independence implies block diagonal transition and state noise matri-
ces A, ΣH and Σ, where each block c has dimension Hc. A one di-
mensional source sc

t for each independent dynamical subsystem is then

formed from sc
t = 1T

chc
t , where 1c is a unit vector and hc

t is the state of
dynamical system c. Combining the sources, we can write st = Pht,

where P = diag(1T

1 , . . . , 1T

C), ht = vert(h1
t , . . . , h

C
t ). The resulting

emission matrix is constrained to be of the form B = WP , where
W is the V × C mixing matrix. This means that the observations
are formed from linearly mixing the sources, vt = Wst + ηv

t . The
graphical structure of this model is presented in Fig 1. To encourage
redundant components to be removed, we place a zero mean Gaussian
prior on W . In this case, we do not define a prior for the parameters

ΣH and ΣV which are instead considered as hyperparameters. More details of the model are given
in [15]. The constraint B = WP requires a minor modification from Section 3, as we discuss below.

Inference on q(h1:T )

A small modification of the mean + fluctuation decomposition for B occurs, namely:
〈
(vt −Bht)

TΣ−1
V (vt −Bht)

〉

q(W )
= (vt − 〈B〉ht)

TΣ−1
V (vt − 〈B〉ht) + hT

t P
TSW Pht ,

where 〈B〉 ≡ 〈W 〉P and SW = V H−1
W . The quantities 〈W 〉 and HW are obtained as in Appendix

A.1 with the replacement ht ← Pht. To represent the above as a LGSSM, we augment vt and B as

ṽt = vert(vt, 0H , 0C), B̃ = vert(〈B〉 , UA, UW P ),

where UW is the Cholesky decomposition of SW . The equivalent LGSSM is then completed by

specifying Ã ≡ 〈A〉, Σ̃H ≡ ΣH , Σ̃V ≡ diag(ΣV , IH , IC), µ̃ ≡ µ, Σ̃ ≡ Σ, and inference for
q(h1:T ) performed using Algorithm 1. This demonstrates the elegance and unity of the approach in
Section 3, since no new algorithm needs to be developed to perform inference, even in this special
constrained parameter case.

4.1 Demonstration

As a simple demonstration, we used an LGSSM to generate 3 sources sc
t with random 5×5 transition

matrices Ac, µ = 0H and Σ ≡ ΣH ≡ IH . The sources were mixed into three observations
vt = Wst + ηv

t , for W chosen with elements from a zero mean unit variance Gaussian distribution,
and ΣV = IV . We then trained a Bayesian LGSSM with 5 sources and 7× 7 transition matrices Ac.

To bias the model to find the simplest sources, we used Âc ≡ 0Hc,Hc
for all sources. In Fig2a and Fig

2b we see the original sources and the noisy observations respectively. In Fig2c we see the estimated
sources from our method after convergence of the hyperparameter updates. Two of the 5 sources
have been removed, and the remaining three are a reasonable estimation of the original sources.
Another possible approach for introducing prior knowledge is to use a Maximum a Posteriori (MAP)
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Figure 2: (a) Original sources st. (b) Observations resulting from mixing the original sources,
vt = Wst + ηv

t , ηv
t ∼ N (0, I). (c) Recovered sources using the Bayesian LGSSM. (d) Sources

found with MAP LGSSM.
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Figure 3: (a) Original raw EEG recordings from 4 channels. (b-e) 16 sources st estimated by the
Bayesian LGSSM.

procedure by adding a prior term to the original log-likelihood log p(v1:T |A, W, ΣH , ΣV , µ, Σ) +
log p(A|α)+ log p(W |β). However, it is not clear how to reliably find the hyperparameters α and β
in this case. One solution is to estimate them by optimizing the new objective function jointly with
respect to the parameters and hyperparameters (this is the so-called joint map estimation – see for
example [16]). A typical result of using this joint MAP approach on the artificial data is presented
in Fig2d. The joint MAP does not estimate the hyperparameters well, and the incorrect number of
sources is identified.

4.2 Application to EEG Analysis

In Fig 3a we plot three seconds of EEG data recorded from 4 channels (located in the right hemi-
sphere) while a person is performing imagined movement of the right hand. As is typical in EEG,
each channel shows drift terms below 1 Hz which correspond to artifacts of the instrumentation,
together with the presence of 50 Hz mains contamination and masks the rhythmical activity related
to the mental task, mainly centered at 10 and 20 Hz [17]. We would therefore like a method which
enables us to extract components in these information-rich 10 and 20 Hz frequency bands. Stan-
dard ICA methods such as FastICA do not find satisfactory sources based on raw ‘noisy’ data, and
preprocessing with band-pass filters is usually required. Additionally, in EEG research, flexibility
in the number of recovered sources is important since there may be many independent oscillators
of interest underlying the observations and we would like some way to automatically determine
their effective number. To preferentially find sources at particular frequencies, we specified a block

diagonal matrix Âc for each source c, where each block is a 2 × 2 rotation matrix at the desired
frequency. We defined the following 16 groups of frequencies: [0.5], [0.5], [0.5], [0.5]; [10,11],
[10,11], [10,11], [10,11]; [20,21], [20,21], [20,21], [20,21]; [50], [50], [50], [50]. The temporal evo-
lution of the sources obtained after training the Bayesian LGSSM is given in Fig3(b,c,d,e) (grouped
by frequency range). The Bayes LGSSM removed 4 unnecessary sources from the mixing matrix
W , that is one [10,11] Hz and three [20,21] Hz sources. The first 4 sources contain dominant low
frequency drift, sources 5, 6 and 8 contain [10,11] Hz, while source 10 contains [20,21] Hz centered
activity. Of the 4 sources initialized to 50 Hz, only 2 retained 50 Hz activity, while the Ac of the



other two have changed to model other frequencies present in the EEG. This method demonstrates
the usefulness and applicability of the VB method in a real-world situation.

5 Conclusion

We considered the application of Variational Bayesian learning to Linear Gaussian State-Space Mod-
els. This is an important class of models with widespread application, and finding a simple way to
implement this approximate Bayesian procedure is of considerable interest. The most demand-
ing part of the procedure is inference of the hidden states of the model. Previously, this has been
achieved using Belief Propagation, which differs from inference in the Kalman Filtering/Smoothing
literature, for which highly efficient and stabilized procedures exist. A central contribution of this
paper is to show how inference can be written using the standard Kalman Filtering/Smoothing recur-
sions by augmenting the original model. Additionally, a minor modification to the standard Kalman
Filtering routine may be applied for computational efficiency. We demonstrated the elegance and
unity of our approach by showing how to easily apply a Variational Bayes analysis of temporal ICA.
Specifically, our Bayes ICA approach successfully extracts independent processes underlying EEG
signals, biased towards preferred frequency ranges. We hope that this simple and unifying inter-
pretation of Variational Bayesian LGSSMs may therefore facilitate the further application to related
models.

A Parameter Updates for A and B

A.1 Determining q(B|ΣV )

By examining F , the contribution of q(B|ΣV ) can be interpreted as the negative KL divergence
between q(B|ΣV ) and a Gaussian. Hence, optimally, q(B|ΣV ) is a Gaussian. The covariance

[ΣB]ij,kl ≡
〈(

Bij − 〈Bij〉
)(

Bkl − 〈Bkl〉
)〉

(averages wrt q(B|ΣV )) is given by:

[ΣB]ij,kl = [H−1
B ]jl [ΣV ]ik , where [HB]jl ≡

T∑

t=1

〈

h
j
th

l
t

〉

q(ht)
+ βjδjl.

The mean is given by 〈B〉 = NBH−1
B , where [NB]ij ≡

∑T
t=1

〈

h
j
t

〉

q(ht)
vi

t + βjB̂ij .

Determining q(A|ΣH)

Optimally, q(A|ΣH) is a Gaussian with covariance

[ΣA]ij,kl = [H−1
A ]jl [ΣH ]ik , where [HA]jl ≡

T−1∑

t=1

〈

h
j
th

l
t

〉

q(ht)
+ αjδjl.

The mean is given by 〈A〉 = NAH−1
A , where [NA]ij ≡

∑T

t=2

〈

h
j
t−1h

i
t

〉

q(ht−1:t)
+ αjÂij .

B Covariance Updates

By specifying a Wishart prior for the inverse of the covariances, conjugate update formulae are
possible. In practice, it is more common to specify diagonal inverse covariances, for which the
corresponding priors are simply Gamma distributions [7, 5]. For this simple diagonal case, the
explicit updates are given below.

Determining q(ΣV )

For the constraint Σ−1
V = diag(ρ), where each diagonal element follows a Gamma prior

Ga(b1, b2) [7], q(ρ) factorizes and the optimal updates are



q(ρi) = Ga



b1 +
T

2
, b2 +

1

2





T∑

t=1

(vi
t)

2 − [GB]ii +
∑

j

βjB̂
2
ij







 ,

where GB ≡ NBH−1
B NT

B .

Determining q(ΣH )

Analogously, for Σ−1
H = diag(τ) with prior Ga(a1, a2) [5], the updates are

q(τi) = Ga



a1 +
T − 1

2
, a2 +

1

2





T∑

t=2

〈
(hi

t)
2
〉
− [GA]ii +

∑

j

αjÂ
2
ij







 ,

where GA ≡ NAH−1
A NT

A.
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