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Abstract

Time-series segmentation in the fully unsupervised sce-

nario in which the number of segment-types is a priori

unknown is a fundamental problem in many applications.

We propose a Bayesian approach to a segmentation model

based on the switching linear Gaussian state-space model

that enforces a sparse parametrization, such as to use only

a small number of a priori available different dynamics to

explain the data. This enables us to estimate the number of

segment-types within the model, in contrast to previous non-

Bayesian approaches where training and comparing sev-

eral separate models was required. As the resulting model is

computationally intractable, we introduce a variational ap-

proximation where a reformulation of the problem enables

the use of efficient inference algorithms.

1. Introduction

This paper introduces a model for segmenting a set of

time-series in the fully unsupervised scenario where the

number of segment-types is a priori unknown. As an exam-

ple, consider the four uni-dimensional unsegmented time-

series plotted in Fig. 1 (a). Our aim is to discover the dy-

namical structure underlying these time-series. An analy-

sis of the data reveals that there are five different underly-

ing dynamical regimes. As shown in Fig. 1 (b), the first

time-series goes through three dynamical regimes (M2, M1

and M3). Similarly, the other time-series exhibit changes

in their dynamical properties through time. More generally,

given a collection of multi-dimensional time-series, we are

interested in discovering the set of underlying dynamical

regimes, and identifying for each series which regime op-

erates at any particular time. This may be viewed as un-

supervised segmentation of time-series, with an automatic

discovery of the number of segment-types.

The approach that we take is to consider a generative

probabilistic temporal model of the observations, namely
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Figure 1. (a) Four uni-dimensional time-
series. (b) Segmentation into five underlying

dynamical regimes.

a switching Linear Gaussian State-Space Model (LGSSM)

[6] where each underlying dynamical regime is modeled

by a different set of parameters. Segmentation is then be

performed based on an application of Bayes’ rule to infer

which set of parameters was most likely to have generated

the observations at any particular time. This approach has

successfully been used in several application domains such

as finance, speech processing, modeling of human motion

and medicine [1, 10, 11, 9].

In our fully unsupervised scenario, the underlying num-

ber of different parameter sets is not known in advance

and needs to be estimated. A common approach to solve

this model structure selection problem is to train a separate

model for each possible structure, and then select the model

that optimizes a trade-off between accuracy and complex-

ity, as measured by the Bayesian Information Criterion for

example. The drawback of this approach is that training

many separate models may lead to a large computational

overhead.

A computationally less expensive alternative for penal-

izing model complexity is offered by Bayesian approaches,

where the model parameters are treated as random variables



and integrated out to yield the marginal likelihood of the

data. The parameter prior distributions can be chosen such

as to enforce a sparse representation, i.e., to select a sub-

set of the available parameters that explains the data well

by making the remaining parameters inactive. As a result,

structure selection can be achieved within the model with-

out the need to compare several models.

A Bayesian approach to the segmentation model based

on the switching LGSSM poses considerable challenges

due to intractability issues. We describe how these is-

sues can be addressed using a variational approximation in

which the problem is formulated such that efficient infer-

ence methods can be used1.

The rest of the paper is organized as follows. In Sec-

tion 2 we introduce the basic segmentation model, while in

Section 3 we describe our Bayesian approach and discuss a

variational approximation method to deal with intractability

issues. We then give some demonstrations in Section 4 and

draw some conclusions in Section 5.

2. Time-Series Segmentation

We start our exposition with the simpler case of seg-

menting a single multi-dimensional time-series v1:T ≡
{v1, . . . , vT }, with vt ∈ ℜV . To model the situation that a

possible different dynamical system operates at any partic-

ular time, we consider a switching Linear Gaussian State-

Space Model (LGSSM). This model assumes that v1:T is

generated from a latent Markovian linear dynamical system

on hidden states h1:T , with ht ∈ ℜH , according to2

vt = Bztht + ηv,zt

t , ηv,zt

t ∼ N (0V ,Σ
zt

V )

ht = Aztht−1 + ηh,zt

t , ηh,zt

t ∼ N (0H ,Σ
zt

H) ,

where zt ∈ 1, . . . ,K is an indicator variable that controls

which of K sets of hidden dynamics and emission param-

eters is used at time t. To simplify the notation, unlike

the more standard assumption of a Markovian dynamics,

we assume that the indicator variables fully factorize, i.e.,

p(z1:T ) =
∏

t p(zt), and that p(zt) is time independent and

parameterized by a vector π such that p(zt = k|π) = πk.

The joint density3 p(z1:T , h1:T , v1:T |Θ1:K , π) admits the

following factorization

T∏

t=1

p(vt|zt, ht,Θ
1:K)p(ht|zt, ht−1,Θ

1:K)p(zt|π),

1A similar approximation approach to a constrained non-fully Bayesian

switching LGSSM has independently been introduced in [9] in the context

of supervised speech processing.
2N (m, S) denotes a Gaussian with mean m and covariance S, while

0X denotes an X-dimensional zero vector. h1 ∼ N (µz1 ,Σz1 ).
3X1:K is a shorthand for X1, . . . , XK .

where Θ1:K={A1:K , B1:K ,Σ1:K
H ,Σ1:K

V , µ1:K ,Σ1:K} and

p(vt|zt = k, ht,Θ
1:K) = N

(
Bkht,Σ

k
V

)

p(ht|zt = k, ht−1,Θ
1:K) = N

(
Akht−1,Σ

k
H

)
.

Unlike the standard LGSSM with fixed parameters over

time, performing inference in the switching LGSSM is

intractable, as for example the filtered state estimate

p(ht|v1:t,Θ1:K) is a mixture of Gaussians with an expo-

nential explosion of mixtures with time. To deal with this

problem, several approximation methods have been intro-

duced in the past. A particularly efficient approximation

based on a novel form of Gaussian sum smoother has re-

cently been proposed in [2].

For the case of N time-series4 v1:N
1:T , we introduce a set

of indicator variables z1:N
1:T (p(z1:N

1:T ) =
∏

n,t p(z
n
t )), where

each indicator znt ∈ {1, . . . ,K} denotes which hidden dy-

namics and emission parameters generated observation vnt .

We then form the likelihood of all observations

p
(
v1:N
1:T |Θ1:K , π

)
=

N∏

n=1

p
(
vn1:T |Θ

1:K , π
)
. (1)

Instead of a standard approach were the optimal values of

Θ1:K and π are learned by maximizing the likelihood, here

we take a Bayesian approach in which the parameters are

treated as random variables and integrated out from Eq. (1).

3. Bayesian Approach

In our Bayesian approach we define prior distributions

p(Θ1:K |Θ̂1:K) and p(π|γ), where Θ̂1:K and γ are the asso-

ciated hyperparameters. We then form the marginal likeli-

hood p(v1:N
1:T |Θ̂1:K , γ) as

∫

Θ1:K ,π

p(v1:N
1:T |Θ1:K , π)p(Θ1:K |Θ̂1:K)p(π|γ). (2)

For the hyperparameters we either take a type-II maximum

likelihood approach [8], where the optimal values are found

by maximizing Eq. (2), or define additional prior distribu-

tions and integrate them out from Eq. (2). Assignment to a

certain dynamical regime is then performed by computing

argmaxk p(z
n
t = k|v1:N

1:T , Θ̂
1:K , γ).

Prior Distributions on Θ1:K

As prior distributions for Θ1:K we define zero-mean Gaus-

sians on the elements of Ak and on the columns of Bk as

follows5

4To simplify the notation, we assume that all time-series are of equal

length T .
5We omit the dependency on k.

�
X−1

�
ii

denotes the ii-th element of

the matrix X−1, while Xj denotes the j-th column of the matrix X. The

dependency of the priors on ΣH and ΣV is chosen to render the imple-

mentation feasible.



p
(
A|α,Σ−1

H

)
=

H∏

i,j=1

α
1/2
ij

√
2π [ΣH ]ii

e−
αij
2 [Σ−1

H ]
ii
A2

ij

p
(
B|β,Σ−1

V

)
=

H∏

j=1

β
V/2
j

√

|2πΣV |
e−

βj
2 B

T

jΣ−1
V
Bj ,

where αk and βk are hyperparameters. The use of type-

II maximum likelihood with this type of priors has the ef-

fect of penalizing complex models and gives rise to a sparse

parametrization. More specifically, during learning some

αkij and βkj get close to infinity, whereby (the posterior dis-

tribution of) Akij and Bkj get close to zero. As an alterna-

tive approach to type-II maximum likelihood, we can define

Gamma distributions on αkij and βkj . When the hyperparam-

eters of the Gamma distributions are set to zero these two

approaches are equivalent, whilst for other values the lat-

ter approach penalizes model complexity less severely. A

discussion on this pruning effect can be found in [12]6.

For modeling general or diagonal inverse covariances

Σ−1
H , Σ−1

V , and Σ−1 we use Wishart or Gamma distribu-

tions respectively, while we define a zero-mean Gaussian

prior for µ.

These choices for the prior distributions render our

Bayesian treatment feasible (see [5] for more details).

Prior Distribution on π

As prior for π, we define a symmetric Dirichlet distribution

p(π|γ) =
Γ (γ)

Γ(γ/K)K

K∏

k=1

π
γ/K−1
k ,

where Γ(·) is the Gamma function. This distribution is

conjugate to the multinomial, which greatly simplifies our

Bayesian treatment of the model7.

Model Intractability

The joint distribution of all observations p(v1:N
1:T |Θ̂1:K , γ) is

given by

∫

Θ1:K ,π

p(π|γ)
∏

k

p(Θk|Θ̂k)
∑

z1:N1:T

∏

n,t

p(vnt |z
n
t ,Θ

1:K)p(znt |π).

Due to the integration over Θ1:K , π and dynamics switch-

ing this distribution is intractable. To deal with the first

intractability issue we use a variational approximation

method, where the biggest challenge is to perform infer-

ence on the hidden state and indicator variables. In [3],

we showed how to achieve the same task in the Bayesian

6In our exposition we take a type-II maximum likelihood approach.

The case of Gamma priors is discussed in [4].
7For Markovian indicator variables with p(zn

t =j|zn
t−1

= i, πi) = πi
j ,

p(zn
1

= j|π) = πj , we can define a Dirichlet distribution for each vector

πi and for π (details are given in [4]).

LGSSM by reformulating the problem such that any in-

ference method developed for the (non-Bayesian) LGSSM

could be used. A similar strategy enables us to perform the

required inference in this model by employing any approx-

imate inference method developed for the (non-Bayesian)

switching LGSSM. This automatically provides a solution

to the second intractability problem.

Variational Approximation

In our variational approximation, we introduce a new distri-

bution q such that8

q
(
h1:N

1:T |z1:N
1:T ,Θ

1:K
)

= q
(
h1:N

1:T |z1:N
1:T

)

q
(
z1:N
1:T ,Θ

1:K , π
)

= q
(
z1:N
1:T

)
q
(
Θ1:K , π

)
.

That is, we assume that the posterior distribution of the hid-

den states are decoupled from Θ1:K given z1:N
1:T , and fur-

thermore that z1:N
1:T are decoupled from the Θ1:K and π.

Nevertheless, the dependence of the hidden states on the

indicators is retained. The aim is to find the q that is closest

to the original distribution p. This can be achieved by min-

imizing the KL divergence between q(h1:N
1:T , z

1:N
1:T ,Θ

1:K , π)

and p(z1:N
1:T , h

1:N
1:T ,Θ

1:K , π|v1:N
1:T , Θ̂

1:K , γ), which is equiv-

alent to maximizing a tractable lower bound on the log-

likelihood log p(v1:N
1:T |Θ̂1:K, γ) ≥ F(Θ̂1:K , γ, q). We thus

proceed by iteratively maximizing the lower bound with re-

spect to the q distributions for fixed hyperparameters Θ̂1:K

and γ and vice-versa until no further improvement is found.

Observation vnt is then placed in the most likely dynamical

regime by computing arg maxk q(z
n
t = k). The resulting

recursive updates are given in the Appendix.

Inference on the Hidden State and Indicator Variables

The final observation assignment to the most likely dynam-

ical regime and the updates for the parameter distributions

require the non-trivial estimation of q(znt ), 〈hnt 〉q(hn
t |zn

t ) and
〈
hnt h

n
t−1

〉

q(hn
t−1:t|z

n
t )

, where 〈·〉q denotes expectation with

respect to q. To solve this task we reformulate the opti-

mal q(hn1:T , z
n
1:T ) as proportional to the joint distribution of

a (non-Bayesian) switching LGSSM. This allows us to use

the efficient approximate inference method developed for

the switching LGSSM in [2]. The details of this approach

are given in the Appendix.

Automatic Selection of Number of Segment-Types

As we have seen above, our prior distributions enforce prun-

ing of elements of A1:K and B1:K . In particular for cer-

tain k all elements of Ak and Bk are pruned out from the

model, such that the k-th dynamical regime becomes inac-

tive (q(znt = k) = 0 for all t, n). This means that, even

8We omit conditioning on the observations and hyperparameters.
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Figure 2. Segmentation of a two-dimensional
time-series generated by a switching LGSSM

with six dynamical regimes. Our model cor-

rectly identifies the underlying regimes.

if we initialize the model with a fixed number of dynami-

cal regimes K , our Bayesian approach ensures that the un-

necessary regimes are pruned out during training. Thus the

selection of the number of segment-types is automatically

performed within the model.

4. Demonstrations

In this section we present some examples on how our

model performs on artificial data and on sequences gen-

erated by video recordings of human movements. As we

expect the time-series to be in the same dynamical regime

for a certain interval of time, we force the value of znt to

be constant for 10 contiguous time-steps (imposing such a

constraint in the model is straightforward). We also present

an example of the extreme situation where each time-series

is forced to be in the same dynamical regime for all time-

steps (znt = zn). In this case inference in the hidden vari-

ables of the model can be performed exactly, since there is

no longer switching in the dynamics, and our segmentation

method reduces to a mixture model for more standard time-

series clustering [13, 7], assigning time-series to the same

cluster if they display similar dynamics.

Artificial Time-Series Segmentation

We first consider the task of segmenting a single multi-

dimensional time-series into different dynamical regimes.

As an illustrative example, we generated a sequence of

length T = 520, using a switching LGSSM with output

dimensionality V = 2, hidden state dimensionality H = 3,

andK = 6 dynamical regimes. The time-series and its seg-

mentation are plotted Fig. 2. We trained our model with

K = 10, H = 6 and initial random parameters. Thanks to

the Bayesian approach enforcing sparsity, the model pruned

out four dynamical regimes and correctly segmented the

time-series into the six underlying regimes with determinis-

tic posterior (q(znt = k) = 0/1).

(a) Unclustered Trajectories (b) Clustered Trajectories

Figure 3. (a) Thirty two-dimensional time-
series resulting from the dynamics of two

different LGSSMs. (b) Underlying clustering

correctly identified by our model.
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As a demonstration for

the more general prob-

lem of segmenting several

multi-dimensional trajec-

tories, we generated eight

sequences of length T =
300, using a switching

LGSSM with V = 2,

H = 4 and five dynamical

regimes (M1-M5). The

segmentation is given on

the right. We trained our

segmentation model with

K = 10, H = 7 and initial random parameters. The

model found five active dynamical regimes and segmented

the time-series in agreement with the underlying segmenta-

tion.

Artificial Time-Series Clustering

As last example on artificially generated data, we consider a

more standard time-series clustering task where each time-

series is in a single dynamical regime for all time-steps.

This can be explicitly imposed in our model with the con-

straint znt = zn.

We generated 30 time-series of dimension V = 2 and

length T = 10, using a LGSSM with two different sets

of hidden dynamics and emission parameters and hidden

state dimensionality H = 4. The parameters were chosen

so that all time-series looked visually dissimilar, see Fig. 3

(a). We trained our model with six clusters (sets of hidden

dynamics and emission parameters), H = 10 and initial

random parameters. The model pruned out four clusters and

perfectly grouped the data into the two underlying clusters

(see Fig. 3 (b)).

More examples on standard time-series clustering, in-

cluding the case of missing observations, are given in [5].



20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

Figure 4. From the top, left to right: sequence of movements for each of the following actions: low

jumping up and down (images 1-3), high jumping up and down (images 4-8), hopping on the left foot
on the spot and moving forward and backward (images 10-15), hopping on the right foot on the spot

and moving laterally (images 16-20). Image 9 represents a transition movement.

Human Body Movement Time-Series Segmentation

In this section, we show an application of our model to the

video recordings of human movements. Our aim is to see

whether the model can identify dynamically similar seg-

ments of motions.

The data analyzed is part of the CMU Graphics Lab

Motion Capture Database, and contains recordings from a

person performing several repetitions of the following ac-

tions for approximatively 17 seconds9: (1) low jumping

up and down, (2) high jumping up and down, (3) hopping

on the left foot, initially on the spot and later moving for-

ward/backward, (4) hopping on the right foot, initially on

the spot and later moving laterally. In Fig. 4 we show a

sequence of movements extracted from the generated video

for each of these actions.

Motions are captured using markers positioned at several

places on the body, giving rise to a 62-dimensional time-

series of length 495. We selected the 24 dimensions corre-

sponding to the markers positioned on the middle and lower

parts of the body, disregarding the ones on the head, neck

and arms. The time-series is displayed Fig. 5.

We trained our model with K = 15 dynamical regimes,

hidden state dimensionality H = 7 and initial random pa-

rameters. The model found six active regimes. In Fig.

5/row 13 we show the segmentation obtained by our model,

while in Fig. 5/row 14 we show the following manual seg-

mentation performed by analyzing the video: first/seventh

segments (1-102/446-495): low jumping up and down,

second segment (103-212): high jumping up and down,

third/fourth segments (213-280/281-347): hopping on the

left foot on the spot and moving forward/backward respec-

tively, fifth/sixth segments (348-374/375-445): hopping on

the right foot on the spot and moving laterally respectively.

Notice that, due to its manual nature, this segmentation is

9The .avi file can be downloaded at http://mocap.cs.cmu.edu, Subject

#49, Trial #2. We disregarded the initial and last part of the movie where

the subject is not moving or performs a non well defined action.

not precise around the boundaries. Furthermore, intermedi-

ate movements performed to switch from one action to the

next are incorrectly assigned to one of the four actions (see

for example image 9 in Fig. 5).

Our model identified the four main actions, but did not

discriminate different ways of performing hopping on one

foot (on the spot vs moving). This seems reasonable since

the video reveals a small difference in the respective body

movements. On the other hand, our model identified differ-

ent dynamical regimes underlying the action high jumping

up and down, which, as we can see from Fig. 4, indeed

requires very different movements of the legs. Finally, our

model considered the last part of the first manual segment

as a different dynamical regime. An analysis of the video

reveals that, at that time, the person performs a different

movement to switch action.

5. Conclusions

We introduced a generative probabilistic temporal model

for segmenting a set of time-series when the number of

segment-types is a priori unknown. The model assumes

that the time-series are generated by a switching Linear

Gaussian State-Space Model where a different set of pa-

rameters represents each underlying dynamical regime. A

Bayesian treatment of the model enforces to obtain a sparse

parametrization, such that only a small number of a pri-

ori available dynamical systems is used to explain the data.

To deal with the resulting model intractability issues we

described a variational approximation, designed to retain

many of the statistical dependencies in the model and to en-

able the use of efficient inference algorithms on the hidden

variables.

Appendix

Below we discuss the updates obtained by maximizing

the lower bound on the log-likelihood. For space reasons,
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Figure 5. Top Rows 1-12: 24-dimensional

time-series generated by video recording
a person performing four different actions.

Bottom Row 13: Segmentation into different
dynamical regimes obtained by our model.

Bottom Row 14: Segmentation into different

actions and sub-actions performed manually
by visual inspection of the video.

we consider only diagonal noise covariances and omit the

updates for µ1:K and Σ1:K distributions and hyperparame-

ters. The missing updates and the case of Gamma priors on

α1:K , β1:K and Markovian indicators can be found in [4].

Hidden State and Indicator Updates

The hidden state and indicator distribution update for each

time-series is given by

q (hn1:T , z
n
1:T ) ∝ e〈log p(z

n
1:T |π)〉

q(π) (3)

e
〈log p(vn

1 ,h
n
1 |Θ

zn
1 )〉

q(Θ
zn
1 )

+
P

T
t=2〈log p(v

n
t ,h

n
t |hn

t−1,Θ
zn

t )〉
q(Θ

zn
t ) .

The final observation assignment to the most likely dynam-

ical regime requires inferring q(znt ). Furthermore, the pa-

rameter distribution updates require inferring the posterior

averages 〈hnt 〉 and
〈
hnt h

n
t−1

〉
(see below).

To address this non-trivial inference problem, the idea

is to rewrite Eq. (3) as proportional the joint distribution

of a switching LGSSM q̃(hn1:T , ṽ
n
1:T |z

n
1:T , Θ̃

1:K)q̃(zn1:T |π̃),
where ṽn1:T and Θ̃1:K , π̃ are new defined observations and

parameters. Once done that, we can perform inference us-

ing the algorithm proposed in [2] for the switching LGSSM,

which has the advantage of being a numerical stable and ac-

curate approximation.

To reformulate Eq. (3), we first notice that thanks to the

factorization

e〈log p(z
n
1:T |π)〉

q(π) = e
P

T
t=1〈log p(z

n
t |π)〉

q(π)

we can define a new distribution

q̃(znt = j|π̃) ∝ e〈log p(z
n
t =j|π)〉

q(π) = eψ(π̃j)−ψ(
P

K
i=1 π̃i),

where ψ(·) is the derivative of the logarithm of the Gamma

function and π̃j are the hyperparameters of the Dirichlet dis-

tribution q(π) (see below).

We then reexpress the second row in Eq. (3) as pro-

portional to the conditional density of a switching LGSSM

q̃(hn1:T , ṽ
n
1:T |z

n
1:T , Θ̃

1:K). More specifically, we rewrite10
〈
(vnt −Bhnt )

TΣ−1
V (vnt −Bhnt )

〉

q(B,Σ−1
V

)
in Eq. (3) as

(vnt − 〈B〉 hnt )
T
〈
Σ−1
V

〉
(vnt − 〈B〉 hnt )

︸ ︷︷ ︸

mean

+ (hnt )
TSBh

n
t

︸ ︷︷ ︸

fluctuation

,

where SB ≡
〈
BTΣ−1

V B
〉
− 〈B〉T

〈
Σ−1
V

〉
〈B〉, and simi-

larly for the part of the exponent in Eq. (3) containing

p(hnt |h
n
t−1,Θ

zn
t ). The mean terms represent the contribu-

tion of a standard switching LGSSM with parameters re-

placed by their average values. The key observation is to

consider the extra ‘fluctuation’ terms as having been gener-

ated from fictitious zero-valued observations, by defining11

ṽnt ≡ vert (vnt , 0H , 0H) , B̃ ≡ vert (〈B〉 , UA, UB) ,

where UB is the Cholesky decomposition of SB , so that

UT
BUB = SB (similarly, UA is the Cholesky decomposi-

tion of SA). The equivalent switching LGSSM is then com-

pleted by specifying Ã ≡ 〈A〉 , Σ̃H ≡
〈
Σ−1
H

〉−1
, Σ̃V ≡

bdg(
〈
Σ−1
V

〉−1
, IH , IH), µ̃ ≡ 〈µ〉 , Σ̃ ≡

〈
Σ−1

〉−1
.

Up to negligible constants, the joint distribution of this

augmented switching LGSSM has the same form as the rhs

of Eq. (3).

Parameter Updates

The parameter distribution updates are given by

q(Θk)∝p(Θk|Θ̂k)e

PN
n=1 q(z

n
1 =k)〈log p(vn

1 ,h
n
1 |Θ

k)〉
q(hn

1
|zn

1
=k)

e

P
N
n=1

P
T
t=2 q(z

n
t =k)〈log p(vn

t ,h
n
t |hn

t−1,Θ
k)〉

q(hn
t−1:t

|zn
t

=k)

q(π) ∝ p(π)e
〈log p(z1:N1:T |π)〉

q(z1:N
1:T

) .

10To simplify the notation, we omit the dependency of the parameters

on the indicator value. This is also done in the description of the parameter

distribution updates.
11vert (X1, . . . , Xn) denotes the vertical concatenation of

X1, . . . , Xn, while bdg (X1, . . . , Xn) denotes the block-diagonal

matrix with blocks X1, . . . , Xn.



The detailed updates are given below.

Determining q(vc (A) |Σ−1
H )

Let vr (X) denote the vector formed by stacking the rows

of the matrix X . The optimal q(vr (A) |Σ−1
H ) is Gaussian

with mean and covariance given by

ver
((

[NA]1′ H
−1
1A

)T
, . . . ,

(
[NA]H′ H

−1
HA

)T
)

bdg
(
[ΣH ]11H

−1
1A , . . . , [ΣH ]HH H

−1
HA

)
,

where Xi′ denotes the i-th row of the matrix X and

NA ≡
N∑

n=1

T∑

t=2

q(znt )
〈
hnt−1 (hnt )

T
〉

q(hn
t−1:t|z

n
t )

HiA ≡
N∑

n=1

T∑

t=2

q(znt )
〈
hnt−1

(
hnt−1

)
T
〉

q(hn
t−1|z

n
t )

+ dg (αi′),

where dg (X) is the diagonal matrix with the elements of

the vector X on the diagonal.

Determining q(vc (B) |Σ−1
V )

Let vc (X) denote the vector formed by stacking the

columns of the matrix X . Then q(vc (B) |Σ−1
V ) ∼

N
(
vc
(
NBH

−1
B

)
, H−1

B ⊗ ΣV
)

where ⊗ is the Kronecker

product and

NB ≡
N∑

n=1

T∑

t=1

q(znt )vnt 〈h
n
t 〉

T

q(hn
t |zn

t )

HB ≡
N∑

n=1

T∑

t=1

q(znt )
〈
hnt (h

n
t )T
〉

q(hn
t |zn

t )
+ dg (β) .

Determining q(Σ−1
H )

If we constraint Σ−1
H to be diagonal with elements τi follow-

ing a Gamma prior G(a1, a2) ∝ τa1−1
i e−a2τi , then q(τi) is

Gamma distributed with parameters

a1 +
1

2

N∑

n=1

T∑

t=2

q(znt )

a2 +
1

2

(
N∑

n=1

T∑

t=2

q(znt )
〈

[ht]
2
i

〉

− [NA]i′ H
−1
iA [NA]Ti′

)

.

Determining q(Σ−1
V )

If we constraint Σ−1
V to be diagonal with elements ρi ∼

G(b1, b2), then q(ρi) is Gamma distributed with parameters

b1 +
1

2

N∑

n=1

T∑

t=1

q(znt )

b2 +
1

2

(
N∑

n=1

T∑

t=1

q(znt ) [vnt ]
2
i −

[
NBH

−1
B NT

B

]

ii

)

.

Determining q(π)

The optimal q(π) is a Dirichlet distribution with parameters

π̃k = γ/k +
∑N

n=1

∑T
t=1 q (znt = k), k = 1, . . . ,K .
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