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Abstract

Many real-world applications with graph data require the so-

lution of a given regression task as well as the identification

of the subgraphs which are relevant for the task. In these

cases graphs are commonly represented as high dimensional

binary vectors of indicators of subgraphs. However, since the

dimensionality of such indicator vectors can be high even for

small datasets, traditional regression algorithms become in-

tractable and past approaches used to preselect a feasible

subset of subgraphs. A different approach was recently pro-

posed by a Lasso-type method where the objective function

optimization with a large number of variables is reformulated

as a dual mathematical programming problem with a small

number of variables but a large number of constraints. The

dual problem is then solved by column generation, where the

subgraphs corresponding to the most violated constraints are

found by weighted subgraph mining. This paper proposes an

extension of this method to a Bayesian approach in which

the regression parameters are considered as random variables

and integrated out from the model likelihood, thus provid-

ing a posterior distribution on the target variable as opposed

to a point estimate. We focus on a linear regression model

with a Gaussian prior distribution on the parameters. We

evaluate our approach on several molecular graph datasets

and analyze whether the uncertainty in the target estimate

given by the target posterior distribution variance can be

used to improve model performance and therefore provides

useful additional information.

1 Introduction

Graphs are general and powerful data types that can
be used to represent many kinds of real-world objects,
including biological sequences, semi-structured texts
such as HTML and XML, chemical compounds, RNA
secondary structures, and so forth. This paper focuses
on regression problems with graphs that require the
identification of the parts of the graphs that are relevant
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Figure 1: A graph and its representation as a binary
vector of subgraph indicators: 1 indicates the presence
while -1 indicates the absence of a certain subgraph.

for solving the task. For example, in drug discovery it is
important to identify the subgraphs which can explain
why a molecular graph candidate is supposed to work
as a drug [1, 2].

In these cases, it is common to represent each graph
as a binary vector of indicators of subgraphs (see Fig.
1) such that subgraph selection can be obtained by se-
lecting the corresponding part of the vector. However,
since the dimensionality of such indicator vectors can be
high even for small datasets, this representation makes
direct application of traditional regression algorithms
intractable and past approaches in the literature used
to first obtain a subset of subgraphs of feasible dimen-
sionality by a mining method and then apply a sep-
arate regression algorithm. This was achieved by fre-
quent substructure mining methods such as AGM [3],
gSpan [4] or Gaston [5] that enumerate all subgraphs
whose frequency is above a minimum threshold. The
most frequent subgraphs were then used as inputs to
a regularized regression algorithm such as L1-SVM [6]
or Lasso [7] which enables relevant subgraph selection.
Other approaches replaced frequent mining by mining
methods that select subgraphs on the basis of statisti-
cal criteria, such as information gain, and then used a
separate regression algorithm [8, 9, 10].

All these methods share the same limitation that



regression and subgraph selection are based on criteria
that are not necessarily well related. Indeed, the most
relevant subgraphs for a certain regression task are not
necessarily a subset of the most frequent subgraphs, as
assumed when frequent mining methods and L1-SVM or
Lasso are used. Similarly, it is not clear how different
statistical criteria relate to different regression models.

Inspired by [11, 12], [13] recently proposed a new ap-
proach based on column generation that overcomes this
limitation. In this approach, a Lasso-type1 optimization
problem with a large number of variables is re-expressed
as a dual mathematical programming problem with a
small number of variables but a large number of con-
straints. The dual problem is then solved by column
generation, in which at each iteration of the algorithm
a subset of most violated constraints is identified and a
restricted optimization problem over the (growing) set
of selected constraints is solved. Only the subgraphs
corresponding to selected constraints can contribute to
the estimation of the target variable.

In this paper we investigate using a similar column
generation approach to obtain a regression model that,
in addition to performing subgraph selection, gives a
posterior distribution on the regression parameters, as
opposed to a point estimate. The advantage is that, in
addition to the target variable estimate, the posterior
distribution can provide extra information, such as
uncertainty in the estimate.

Our approach is to use a Bayesian method where
the parameters are treated as random variables and in-
tegrated out from the model. We consider the simpler
case of a linear model with a Gaussian prior distribution
on the parameters and focus on molecular graph appli-
cations. We compare the performance of this approach
with the Lasso-type approach on several datasets, and
analyze whether the uncertainty in the target estimate
given by the target posterior distribution variance can
be used to improve model performance and therefore
provides useful additional information.

The rest of the paper is organized as follows. In
Section 2 we describe a Bayesian approach to linear
regression and present an algorithm for learning the
hyperparameters recently introduced in [14]. In Section
3 we combine this algorithm with a column generation
approach for the intractable case in which the inputs are
binary vectors of indicators of subgraphs. In Section 4
we describe the Lasso-type method introduced in [13]
that we use for comparison with our method. We then
present some results on molecular graph data in Section
5 and draw some conclusions in Section 6.

1With Lasso-type we mean that the same objective function
as in Lasso [7] is employed.

2 Bayesian Linear Regression

Given n pairs of input-target variables (xi, yi) ∈ Rd×R,
we consider the following linear regression model

y = Xw + ǫ,

where X and y are the n×d matrix and the n×1 vector
formed by stacking all inputs and targets respectively,
w is a vector of unknown parameters and2 ǫ ∼ N (0, λI)
is a Gaussian noise vector with unknown covariance
element λ. An equivalent probabilistic formulation of
this model is given by3

p(y|w, λ) = N (Xw, λI) .

In our Bayesian approach, we introduce a zero-mean
Gaussian prior distribution on w, p(w|γ) = N (0, Γ),
where Γ is a diagonal matrix with unknown hyperpa-
rameters γi on the diagonal, and form the marginal like-
lihood

p(y|λ, γ) =

∫

w

p(y|w, λ)p(w|γ) = N
(
0, XΓXT + λI

︸ ︷︷ ︸

Σ

)
.

As opposed to a point estimate of standard linear
regression methods, this approach provides a posterior
distribution on w, given by

p(w|y, λ, γ) = N
(
ΓXTΣ−1y
︸ ︷︷ ︸

µw

, Γ− ΓXTΣ−1XΓ
︸ ︷︷ ︸

Σw

).(2.1)

The optimal values of γi are learned by type-II max-
imum likelihood [15], i.e., by maximization of the
marginal likelihood, whilst λ is selected by validation.
This choice has the advantage of making all quantities of
interest computationally tractable and thus avoids the
need to introduce approximations.

To predict an unknown target variable y∗ from
a new input variable x∗, we can use the predictive
distribution

p(y∗|y, λ, γ) = N
(
(x∗)Tµw, (x∗)TΣwx∗ + λ

)
.(2.2)

The mean in (2.2) gives an estimate of the target vari-
able, while the variance gives a measure of uncertainty
in the estimate. Due to the linear relation between in-
puts and targets and to the choice of a Gaussian prior
distribution on w, the information provided by the pre-
dictive variance is restricted. In particular, the Gaus-
sian prior makes the variance independent on the targets
y. Nonlinear approaches and other prior distributions

2N (m, S) denotes a Gaussian with mean m and covariance S.
I is the identity matrix.

3To simplify the notation, we omit the conditioning on X.



Algorithm 1

1: z = 1
2: repeat

3: w ← argminw

∑n
j=1

(yj −
∑d

i=1
Xjiwi)

2

+2λ
∑d

i=1
z
1/2

i |wi|

4: γi = z
−1/2

i |wi|, i = 1, . . . , d

5: Σ−1 = (XΓXT + λI)−1

6: z = diag
[
XTΣ−1X

]

7: until convergence

could be employed to obtain a richer variance. However,
this would introduce intractability issues and make the
development of the model for the case of high dimen-
sional graph representation more complex.

The use of a zero-mean Gaussian prior on w
and type-II maximum likelihood enforces a sparse
parametrization. This allows to select the elements of
the input vectors which are relevant for solving the given
regression task. Indeed, during training, the model is bi-
ased towards learning a zero value for γi such that the
corresponding elements of the input vectors do not con-
tribute to the model (e.g., from (2.1) we can see that,
if γi = 0, the i-th element of µw and the i-th row and
column of Σw become zero so that the i-th elements of
the input variables do not contribute to the predictive
distribution (2.2)). This pruning effect is explained in
details in [16].

2.1 Finding the Optimal Hyperparameters γ
The optimal set of hyperparameters γ can be found
by maximizing the marginal likelihood p(y|λ, γ), or
equivalently by setting

γ ← argmin
γ
L(γ) ≡ argmin

γ
log |Σ|+ yTΣ−1y.

Whilst this minimization problem can be solved with
gradient-based methods or Expectation Maximization,
here we describe a different approach, recently intro-
duced in [14], that will be useful for dealing with our
high dimensional graph representation.

In this approach, the minimization of L(γ) with
respect to γ is reformulated by introducing a new set
of auxiliary variables z in order to obtain a convex
optimization problem. More specifically, since log |Σ|
is concave in γ it can be expressed as

log |Σ| = min
z

zTγ − g∗(z),

where g∗(z) is the concave conjugate of log |Σ|, defined
by

g∗(z) = min
γ

zTγ − log |Σ|.

We can then construct an upperbounding function

L(γ, z) ≡ zTγ − g∗(z) + yTΣ−1y ≥ L(γ).

Minimizing L(γ) can be achieved by iteratively mini-
mizing L(γ, z) over z for fixed γ and vice-versa. For
fixed γ, the optimal z is given by4

z = diag
[
XTΣ−1X

]
.

On the other hand, for fixed z, the optimal γ can be
found as

γ ← argmin
γ

zTγ + yTΣ−1y,

which is equivalent to solving the following quadratic
convex minimization problem

w ← argmin
w

n∑

j=1

(

yj −
d∑

i=1

Xjiwi

)2

+ 2λ
d∑

i=1

z
1/2

i |wi|,

(2.3)

and then set γi = z
−1/2

i |wi|.
This optimization procedure is summarized in Al-

gorithm 1.

3 Bayesian Linear Regression with Graphs

In our regression problem with graphs each input xi ∈
Rd is a binary vector of indicators of subgraphs. Even
for small datasets, the high dimensionality of such
vector renders Algorithm 1 intractable.

In this section we show how Algorithm 1 can be
modified to obtain a tractable method. We start by
reformulating the minimization problem (2.3) with a
large number of variables as a minimization problem
with a small number of variables but a large number
of constraints. We then introduce a column generation
approach where, at each iteration, (2.3) is solved only
over d̃ elements of w corresponding to a set of most
violated constraints at the current solution and to the
constraints selected at the previous iterations. This
way we obtain an algorithm that is tractable, since
it operates in a d̃-dimensional input space, with the
exception of the search of the most violated constraints,
for which we introduce an efficient mining method.

3.1 Reformulation of the Minimization Prob-

lem (2.3) By defining wi ≡ w+
i −w−

i , the minimization

4With diag [A] we indicate a vector formed by the diagonal
elements of the matrix A.



Algorithm 2

1: d̃ = 0

2: for k = 1, . . . , K do

3: Select the d̂ most violated constraints

4: d̃← d̃ + d̂

5: Collect the input elements corresponding to the selected constraints in a n× d̃ matrix X

6: repeat

7: zi =
∑n

j,k=1
XjiΣ

−1

jk Xki (if k = 1, zi = 1) i = 1, . . . , d̃

8: (w1, . . . , wd̃)← argminw+,w−,ξ

∑n
j=1

ξ2
j + 2λ

∑d̃
i=1

z
1/2

i (w+
i + w−

i ),

s.t.− ξj ≤ yj −
∑d̃

i=1
Xji(w

+
i − w−

i ) ≤ ξj j = 1, . . . , n

w+
i ≥ 0, w−

i ≥ 0 i = 1, . . . , d̃

9: γi = z
−1/2

i |wi| i = 1, . . . , d̃

10: Γ← Diagonal matrix with γ1, . . . , γd̃ on its diagonal

11: Σ−1 = (XΓXT + λI)−1

12: until convergence

13: end for

problem (2.3) can be rewritten as the following con-
strained quadratic programming problem

min
w+,w−,ξ

n∑

j=1

ξ2
j + 2λ

d∑

i=1

z
1/2

i (w+
i + w−

i )

(3.4)

s.t.− ξj ≤ yj −
d∑

i=1

Xji(w
+
i − w−

i ) ≤ ξj j = 1, . . . , n

w+
i ≥ 0, w−

i ≥ 0 i = 1, . . . , d.

By setting the derivatives of the Lagrangian with re-
spect to w+

i , w−
i and ξj to zero and substituting back

the optimal lagrange multipliers, we obtain the follow-
ing dual problem

min
u+,u−

−
n∑

j=1

(u+
j − u−

j )yj +
1

16

n∑

j=1

(u+
j + u−

j )2

(3.5)

s.t. − 2λz
1/2

i ≤
n∑

j=1

(u+
j − u−

j )Xji ≤ 2λz
1/2

i i = 1, . . . , d

u+
j ≥ 0, u−

j ≥ 0 j = 1, . . . , n,

where u+, u− are dual variables. Unlike the original
problem, the dual has a small number of variables but
a large number of constraints.

3.2 Computationally Tractable Algorithm Us-
ing this reformulation, we introduce a new computa-
tionally tractable algorithm based on column genera-
tion. The idea of column generation is to iteratively

solve a relaxation of the dual (3.5) where only a growing
subset of constraints are considered, which is equivalent
to solving (3.4) only over the corresponding elements of
w+, w−. At each iteration the most violated constraints
given the current solution are added to (3.5). Optimal-
ity is reached when no more violated constraints can be
found.

Our recursive procedure is summarized in Algo-
rithm 2. At iteration k, we select the d̂ most violated
constraints in (3.5) and collect the elements of the input
vectors corresponding to the d̃ constraints selected up
to iteration k in a n × d̃ matrix X . Then, until con-
vergence, we compute the optimal zi, i = 1, . . . , d̃, (see
step 7 in Algorithm 2), solve the optimization problem
(3.4) over the d̃ variables corresponding to the selected
constraints, and compute γi, i = 1, . . . , d̃, and Σ−1 (see
steps 9-11 in Algorithm 2).

Except when finding the most violated constraints,
Algorithm 2 operates in a d̃-dimensional input space.
Below we describe an efficient mining method for iden-
tifying such constraints.

3.3 Selecting the Most Violated Constraints

Before getting into the main discussion, we provide for-
mal definitions of graphs and subgraphs and describe
how we represent a graph as a vector of subgraph indi-
cators. We consider undirected labeled and connected
graphs.

Definition 3.1. A labeled graph is a 4-tuple G =
(V, E,L, l), where V is a set of vertices, E ⊆ V × V is
a set of edges, L is a set of labels, and l : V ∪E → L is
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Figure 2: Schematic figure of the tree-shaped search
space of graph patterns (i.e., the DFS code tree).
To find the optimal pattern efficiently, the tree is
systematically expanded by rightmost extensions.

a mapping that assigns labels to the vertices and edges.
A labeled connected graph is a labeled graph such that
there is a path between any pair of vertices.

Definition 3.2. Let G′ = (V ′, E′,L′, l′) and G =
(V, E,L, l) be labeled connected graphs. G′ is a subgraph
of G (G′ ⊆ G) if the following conditions are satisfied:
(1) V ′ ⊆ V , (2) E′ ⊆ E, (3) L′ ⊆ L, (4) ∀v′ ⊆
V ′, l(v′) = l′(v′) and (5) ∀e′ ⊆ E′, l(e′) = l′(e′). If
G′ is a subgraph of G, then G is a supergraph of G′.

Let p be a subgraph pattern in a graph, and P
be the set of all patterns, i.e., the set of all subgraphs
included in at least one graph. Given n graphs in the
database, each graph Gj is represented as a d ≡ |P|-
dimensional vector xj and we form a matrix X where

Xjp =

{
1 if p ⊆ Gj ,
−1 otherwise

The violation of the dual constraint given in (3.5) is
described as

g(p) =

∣
∣
∣
∣
∣
∣

n∑

j=1

ujXjp

∣
∣
∣
∣
∣
∣

− 2λ

√
√
√
√

n∑

j=1

n∑

k=1

Σ−1

jk XjpXkp,

where uj ≡ u+
j − u−

j and
∑n

j=1

∑n
k=1

Σ−1

jk XjpXkp is
the optimal value of zp. We call it the gain function of

p. An efficient algorithm that finds the best d̂ patterns
in terms of the gain function is necessary. In [17] a
similar mining problem is solved, but this gain function
is nontrivially different from theirs in that our gain
contains cross terms XjpXkp.

Optimal Pattern Search Our search strategy to find
the best d̂ patterns is a branch-and-bound algorithm
that requires a canonical search space in which a whole

set of patterns are enumerated without duplication. As
the search space, we adopt the DFS code tree [4]. The
basic idea of the DFS code tree is to organize patterns
as a tree, where a child node has a supergraph of the
pattern in its parent node (see Fig. 2). A pattern is
represented as a text string called the DFS (depth first
search) code. The patterns are enumerated by gener-
ating the tree from the root to leaves using a recursive
algorithm. To avoid duplications, node generation is
systematically done by rightmost extensions.

For efficient search, it is important to minimize the
size of the search space. To this aim, we perform tree
pruning by using the bound defined by the following
theorem

Theorem 3.1. Define

s+(p) = 2
∑

{j|uj≥0,p⊆Gj}

|uj| −
n∑

j=1

uj

s−(p) = 2
∑

{j|uj<0,p⊆Gj}

|uj|+
n∑

j=1

uj

and Rk =
∑n

j=1
Σ−1

jk . For any supergraph p′ of p, the
following bound holds

g(p′) ≤ max{s+(p), s−(p)}

− 2λ

√
√
√
√

n∑

k=1

Rk − 4
∑

Rk>0

RkI(p ⊆ gk).(3.6)

The proof of this theorem can be found in the Appendix.
Suppose the search tree is generated up to the

pattern i and the best d̂ patterns at this point are
recorded. Let g∗ be the gain of the d̂-th best pattern.
If the right hand size of (3.6) is smaller than g∗, then
there are no possibility that any supergraph p′ enters
the list of best patterns. Therefore, the search tree can
be pruned at p.

4 Lasso-type Linear Regression with Graphs

In this section we summarize the Lasso-type approach
to graph regression proposed in [13] that we use for
comparison with our approach.

Consider the regression problem y = Xw + ǫ,
ǫ ∼ N (0, λI), in which we assume that each wi follows
a Laplace distribution p(wi|b) ∝ e−b|wi|. The joint
distribution p(y, w|λ, b) is given by

p(y, w|λ, b) ∝ e−
λ
2

Pn
j=1(yj−

Pd
i=1

Xjiwi)
2
−b
Pd

i=1
|wi|.

Traditional Lasso [7] finds the optimal value of w by



Regression GRAPHS ATOMS BONDS
EDKB-ES 59 18.2 19.7
EDKB-ER 131 19.2 20.7
EDKB-AR 146 19.5 21.1

Classification GRAPHS ATOMS BONDS
CPDB 684 14.1 14.6

AIDS (CAvsCM) 1503 58.9 61.4
CAS 4337 29.9 30.9

Table 1: Dataset summary. EDKB-ES, EDKB-ER and
EDKB-AR are regression datasets, while CPDB, AIDS
and CAS are classification datasets. The number of
graphs (GRAPHS) and the average number of atoms
(ATOMS) and bonds (BONDS) are shown for each
dataset.

maximizing p(y, w|λ, b), or equivalently by setting

w ← argmin

n∑

j=1

(

yj −
d∑

i=1

Xjiwi

)2

+ C

d∑

i=1

|wi|,(4.7)

where C = 2b/λ is found by validation. The estimate
of an unknown target variable y∗ given a new input
variable x∗ is obtained by computing (x∗)Tw.

For the case of graph data where d is very large
and the problem becomes intractable, [13] proposed a
column generation approach by rewriting (4.7) as an
optimization problem with a small number of variables
but a large number of constraints, following a similar
procedure as the one described in Section 3.1. Notice
that this approach can be seen as a special case of our
Bayesian approach in which z is set to 1 (since (4.7) is
equivalent to (2.3) with z = 1).

5 Experiments

In this section we apply our Bayesian model to six
molecular graph datasets. We first compare the per-
formance obtained by using the predictive mean as an
estimate of the target variable with the Lasso-type per-
formance, which was shown to be competitive with re-
spect to other approaches on this data [13]. We then
analyze whether this performance can be improved by
disregarding test samples that show high predictive vari-
ance.

The analyzed data include three datasets from En-
docrine Disruptors Knowledge Base (EDKB)5: ES, ER
and AR, two mutagenicity datasets: CPDB6 and CAS7,
and one antiviral screen dataset: AIDS (CAvsCM)8.

5http://edkb.fda.gov/databasedoor.html
6Available from the supplementary information of [1]
7http://www.cheminformatics.org/datasets/bursi/
8http://dtp.nci.nih.gov/docs/aids/aids screen.html

The first three are regression while the remaining three
are classification datasets. The statistics of the datasets
are summarized in Table 1.

5.1 Bayesian vs Lasso-type Linear Regression

Experimental Setup Each molecular graph dataset
was randomly split into five equally-sized subsets. Four
subsets were used for training, while half of the filth
subset was used for validation and the other half for
testing and viceversa. The five subsets were circularly
shifted five times, such that the experiments were
performed using five different parts of the dataset for
training, validation and testing. The validation set was
used to choose the noise variance λ in the Bayesian
approach and the hyperparameter C in the Lasso-type
approach (see (4.7)) in the range {0.01, 0.05, 0.1, 0.5,
1}, the maximum subgraph pattern size9 in the range
{10, 15}, and the number of iterations K. The number

d̂ of most violated constrains to be selected at each
iteration was set to 5, except for the Bayesian approach
applied to the regression data where d̂ was set to 10,
and no threshold was imposed on the frequency of the
subgraphs. In the Bayesian model, instead of iterating
steps 7-11 in Algorithm 2 until convergence, we fixed
a maximum number of iterations (25 for the regression
data and 5 for the classification data).

Results The performance given by the two models
is summarized in Table 2 (the best performance is
highlighted using bold characters). For the regression
datasets, we report the average of the root mean squared
error (RMSE) ± the standard deviation (std) over the
different train-validation-test configurations described
above. For the classification datasets, we report the
average classification accuracy (CA) ± std. As we can
see, the two approaches give similar performance.

In the table, we also report the average number
of selected relevant subgraphs (SG) and the average
computation time (in seconds), decomposed into mining
time (MT) and optimization time (OT). The former
indicates the time for expanding and traversing the
pattern space (step 3 in Algorithm 2), and the latter
indicates the time for solving the series of restricted dual
problems and variable updates (steps 4-12 and step 8
with z = 1 in Algorithm 2 for the Bayesian and Lasso-
type methods respectively).

The selected maximum pattern size omitted in the
table was 15 for the EDKB-ES and EDKB-AR datasets
in the Bayesian model and 10 otherwise.

The top 20 active subgraphs found by our Bayesian

9The subgraph pattern size is given by the number of nodes.



Table 2: Performance of Lasso-type and Bayesian Linear Regression on six molecular datasets. The values in
parentheses indicate the hyperparameters selected by validation (K is the number of iterations). We report the
average RMSE ± the standard deviation (std) for the first three regression datasets and the average classification
accuracy CA ± std for the last three classification datasets. SG indicates the average number of selected relevant
subgraphs, while MT and OT indicate (in seconds) the average mining time required for selecting the most
violated constraints and for optimization respectively.

Lasso-type Linear Regression Bayesian Linear Regression
(C, K) SG MT(s) OT(s) RMSE/CA (λ, K) SG MT(s) OT(s) RMSE/CA

ES (0.5,10.6) 39.3 41 25 0.33± 0.14 (0.05,4.9) 32.7 348 142 0.34± 0.15
ER (0.5,15.1) 52.8 60 103 0.36± 0.08 (0.1,8.6) 47.0 33 836 0.38± 0.08
AR (0.5,16.7) 60.4 158 171 0.28± 0.07 (0.1,8.1) 40.8 1737 961 0.28± 0.11

CPDB (0.5,19.6) 83.1 78 1621 77.0± 1.82 (0.1,13.6) 59.8 86 3442 77.6± 2.22

AIDS (0.5,17.0) 68.6 2511 3830 81.8± 1.06 (1,16.5) 46.7 2293 6244 82.8± 1.05

CAS (0.01,19.5) 74.0 2733 22067 81.5± 1.79 (0.05,16.5) 71.0 3662 42099 82.1± 1.81

model for the EDKB-AR and CPDB datasets are plot-
ted in Fig. 3. The subgraphs mined from the CPDB
dataset are especially interesting, since a toxicophore
known as aromatic amine is detected as a whole with
relevance 0.1274, and a part of it is detected many times
with high relevance. Furthermore, Cl and Br atoms are
known to form the toxicophore aliphatic halide, and our
model gave high relevance to them. On the other hand,
the subgraphs mined from the EDKB-AR dataset are
rather difficult to interpret due to the smaller number
of edge and atom types. It is possible to increase the
interpretability, e.g., by setting the maximum pattern
size larger, and/or by enriching the atom/bond labels
by incorporating neighboring atom/bond information.

5.2 Bayesian Test Sample Rejection In this sec-
tion we investigate whether by using the predictive vari-
ance in (2.2) in addition to the mean we can improve
the performance of the Bayesian model.

The predictive variance gives us an indication of
uncertainty in the target estimate. As pointed out in
Section 2, due to model assumptions, this variance is
expected to be of limited expressivity. Nevertheless,
from the predictive means and standard deviations of
the test samples plotted in Fig. 4 (blue circles and
bars respectively), it would seem that means which are
further from the true values (magenta stars) have higher
standard deviation, and therefore that the predictive
variance in this data gives useful information about
the target estimate. To further analyze this point, we
investigate whether the information contained in the
predictive variance can improve the performance of our
model, by rejecting test samples with high variance.

We performed the analysis on the three regression

datasets EDKB-ES, EDKB-ER and EDKB-AR. More
specifically, we computed the performance of the model
using the selected hyperparameters given in Table 2
on the restricted test datasets containing only samples
whose predictive standard deviation was below a certain
threshold. In each test dataset, we varied the thresh-
old in a range between the minimum and maximum
predictive standard deviation. For each threshold, we
compared the performance obtained with this approach
with the one obtained by randomly rejecting the same
portion of test data.

In Fig. 5 we report the obtained average mean
squared error (MSE) as a function of the average
standard deviation threshold. The performance of the
random and Bayesian rejection is plotted in green and
blue respectively. The original performance obtained
by keeping all test samples is given by the first value on
the X-axis for each plot (where the errors obtained by
random and Bayesian rejection coincide). As expected,
the error obtained by random rejection oscillates when
varying the threshold but on average remains close to
the value obtained by keeping all test samples. On
the other hand, by decreasing the standard deviation
threshold, the error obtained by performing rejection
using our Bayesian approach is reduced in the EDKB-
ES and EDKB-AR datasets. In the EDKB-ER dataset,
on average the use of the predictive variance does not
improve the performance. However, it is interesting
to note that, when using different hyperparameters
than those selected by validation (that give similar
test performance), we can often observe improvement.
The reason why different types of predictive variance
are learned and why this does not affect the original
performance is a point that needs to be investigated.
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Figure 3: Top 20 relevant subgraphs selected by our Bayesian model for the EDKB-AR (top) and CPDB (bottom)
datasets. Each subgraph is shown with the corresponding γi which gives a measure of its relevance. H atom is
omitted, and C atom is represented as a dot for simplicity. Aromatic bonds appeared in an open form are displayed
by the combination of dashed and solid lines.

6 Conclusions

In this paper we introduced a Bayesian approach for
solving regression problems with graphs that require the
identification of relevant subgraphs. In our approach,
the objective function optimization with a large num-
ber of variables is reformulated as a dual mathematical
programming problem with a small number of variables
but a large number of constraints. The dual problem is
then solved by column generation, where the subgraphs
corresponding to the most violated constraints are found
by weighted subgraph mining. We have demonstrated
that, on molecular graph data, this approach is compet-
itive with others previously presented in the literature.
In addition, we have shown that the target posterior

distribution variance provides useful additional infor-
mation to the target estimate.

It would be interesting to analyze the use of this
model for experimental design in applications such as
chemoinformatics, where active selection of the experi-
ments to perform could reduce the costs. Another inter-
esting area of research would be to investigate how to
use a column generation approach with other Bayesian
regression models that can provide a richer predictive
variance.

Appendix

Here we proof Theorem 1 introduced to perform tree
pruning in the mining algorithm (Section 3.3).
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Figure 4: Ten test samples from the EDKB-AR dataset. The blues circles and their bars indicate the means and
standard deviations given by the predictive distribution. The magenta starts indicate the true target values.
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Figure 5: Average mean squared error (MSE) obtained in the datasets EDKB-ES, EDKB-ER and EDKB-AR
by rejecting test samples. In blue we show the error obtained by our Bayesian model keeping only the samples
whose predictive distribution has standard deviation below a certain threshold (X-axis). The first value on the
X-axis indicates the error obtained by keeping all test samples. In green we show for each threshold value the
error obtained by randomly rejecting the same amount of samples as in the Bayesian model.

Proof of Theorem 1

Let us bound the first term of g(p′) from above first

n∑

j=1

ujXjp′ = 2
∑

{j|p′⊆Gj}

uj −
n∑

j=1

uj

≤ 2
∑

{j|uj≥0,p′⊆Gj}

uj −
n∑

j=1

uj

≤ 2
∑

{j|uj≥0,p⊆Gj}

uj −
n∑

j=1

uj = s+(p),

where the second inequality follows from

(6.8) {j|uj ≥ 0, p′ ⊆ Gj} ⊆ {j|uj ≥ 0, p ⊆ Gj}.

Similarly the inequality
∑n

j=1
ujXjp′ ≥ −s−(p) holds,

hence the first term is bounded by the maximum of
s+(p) and s−(p). Regarding the second term of g(p′),

the quadratic term inside the square root is written as

L =

n∑

j=1

n∑

k=1

Σ−1
jk (2I(p′ ⊆ gj)− 1)(2I(p′ ⊆ gk)− 1)

= 4
∑

j,k

Σ−1

jk I(p′ ⊆ gj)I(p′ ⊆ gk)− 4
∑

k

RkI(p′ ⊆ gk)

+
∑

k

Rk.

Due to the positive definiteness of Σ−1, the first term is
positive, therefore

L ≥ −4
∑

k

RkI(p′ ⊆ gk) +
∑

k

Rk

≥ −4
∑

Rk>0

RkI(p′ ⊆ gk) +
∑

k

Rk

≥ −4
∑

Rk>0

RkI(p ⊆ gk) +
∑

k

Rk,

where the second inequality follows from (6.8).
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