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Abstract

Motor primitives or motion templates have become an important concept for both
modeling human motor control as well as generating robot behaviors using imi-
tation learning. Recent impressive results range from humanoid robot movement
generation to timing models of human motions. The automatic generation of skill
libraries containing multiple motion templates is an important step in robot learn-
ing. Such a skill learning system needs to cluster similar movements together and
represent each resulting motion template as a generative model which is subse-
quently used for the execution of the behavior by a robot system. In this paper,
we show how human trajectories captured as multi-dimensional time-series can be
clustered using Bayesian mixtures of linear Gaussian state-space models based on
the similarity of their dynamics. The appropriate number of templates is automat-
ically determined by enforcing a parsimonious parametrization. As the resulting
model is intractable, we introduce a novel approximation method based on varia-
tional Bayes, which is especially designed to enable the use of efficient inference
algorithms. On recorded human Balero movements, this method is not only ca-
pable of finding reasonable motion templates but also yields a generative model
which works well in the execution of this complex task on a simulated anthropo-
morphic SARCOS arm.

1 Introduction

Humans demonstrate a variety and versatility of movements far beyond the reach of current anthro-
pomorphic robots. It is widely believed that human motor control largely relies on a set of “mental
templates” [1] better known as motor primitives or motion templates. This concept has gained in-
creasing attention both in the human motor control literature [1, 2] as well as in robot imitation
learning [3, 4]. The recent suggestion of Ijspeert et al. [3] to use dynamical systems as motor
primitives has allowed this approach to scale in the domain of humanoid robot imitation learning
and has yielded a variety of interesting applications as well as follow-up publications. However, up
to now, the focus of motion template learning has largely been on single template acquisition and
self-improvement. Future motor skill learning systems on the other hand need to be able to observe
several different behaviors from human presenters and compile libraries of motion templates directly
from these examples with as little predetermined structures as possible.

An important part of such a motor skill learning system is the clustering of many presented move-
ments into different motion templates. Human trajectories are recorded as multi-dimensional time-
series of joint angles as well as joint velocities using either a marker-based tracking setup (e.g.,
a VICONTM setup), a sensing suit (e.g., a SARCOS SenSuit) or a haptic interface (e.g., an an-
thropomorphic master arm). Inspired by Ijspeert et al. [3], we intend to use dynamical systems
as generative models of the presented trajectories, i.e., as motion templates. Our goal is to cluster
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these multi-dimensional time-series automatically into a small number of motion templates without
pre-labeling of the trajectories or assuming an a priori number of templates. Thus, the system has
to discover the underlying motion templates, determine the number of templates as well as learn the
underlying skill sufficiently well for robot application.

In principle, one could use a non-generative clustering approach (e.g., a type of K-means) with a
method for selecting an appropriate number of clusters and, subsequently, fit a dynamics system-
based generative model to each cluster. Here, we take a different approach and perform clustering
and learning of the underlying time-series dynamics at the same time. This way we aim at ensuring
that each obtained cluster can be modeled well by its representative generative model.

For determining the number of clusters, most generative approaches in the past used to train a sepa-
rate model for each possible cluster configuration, and then select the one which would optimize the
trade-off between accuracy and complexity, as measured, for example, by the Bayesian Information
Criterion [5, 6, 7]. The drawback of these approaches is that training many separate models can lead
to a large computational overhead, such that heuristics are often needed to restrict the number of
possible cluster configurations used in order to ensure computational feasibility [7].

A less computationally expensive alternative is offered by recent Bayesian approaches where the
model parameters are treated as random variables and integrated out yielding the marginal likelihood
of the data. An appropriate prior distribution can be used to enforce a sparse representation, i.e., to
select the simplest set of parameters that explains the data well by making the remaining parameters
inactive. As a result, the structure selection can be achieved within the model, without the need to
train and compare several separate models.

To date the majority of the work on generative Bayesian models for clustering has focused on static
mixture models [8, 9, 10, 11], for which a number of approximate algorithms have been developed
to deal with the intractability issues arising from parameter marginalization. Clustering long or
high-dimensional time-series is hard when approached with static models, such that collapsing the
trajectories to a few relevant features is often required. This problem would be severe for a high-
dimensional motor learning system where the data needs to be represented at high sampling rates in
order to ensure the capturing of all relevant details for motor skill learning. In addition, it is difficult
to ensure smoothness when the time-series display high variability and, therefore, to obtain accurate
generative models with static approaches.

A natural alternative is to use mixtures of temporal models which explicitly model the dynam-
ics of the time-series. In this paper, we use a Bayesian approach to Mixtures of Linear Gaussian
State-Space Models (LGSSMs). LGSSMs have been frequently covered in the literature [12] due
to the fact that, despite their computational simplicity, they can represent many natural dynamical
processes. As we will see later in this paper, LGSSMs are powerful enough to model our time-
series sufficiently accurately while the Bayesian treatment of the model results in a parsimonious
parametrization. Whilst previous Bayesian approaches to Mixtures of LGSSMs have focused on
stochastic approximations to deal with model intractability [6], in this paper we introduce a deter-
ministic approximation based on variational Bayes. Importantly, our approximation is especially
designed to enable the use of standard LGSSM inference methods for the hidden state variables,
which has the advantage of minimizing numerically instabilities.

As a realistically difficult scenario in this first step towards large motor skill libraries, we have
selected the game of dexterity Balero (also known as Ball-In-A-Cup or Kendama, see [13]) as an
evaluation platform. Successfully swinging the ball into the cup requires a skilled human performer
and humans tend to have a large variability in the performed movements [14]. In addition, several
substantially different movements exist for performing this task. From a robotics point of view,
Balero can be considered sufficiently complex as it involves movements in all major seven degrees
of freedom of a human arm as well as an anthropomorphic robot arm. We are able to show that
the presented method results in a reasonable amount of clusters where each movement is physically
quite distinct from the other movements. The resulting generative models can be used successfully
as motion templates in physically realistic simulations.

In the remainder of the paper, we will proceed as follows. We will first introduce a generative
approach for clustering and modeling multiple time-series with Bayesian Mixtures of LGSSMs and
describe how this approach can be made tractable using a variational approximation. We will then
show that the resulting model can be used to infer the motion templates underlying a set of human
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demonstrations, and give evidence that the generative model representing each motion template is
sufficiently accurate for control in a mechanically plausible simulation of the SARCOS Master Arm.

2 Bayesian Mixtures of Linear Gaussian State-Space Models

Our goal is to model both human and robot movements in order to build motion template libraries. In
this section, we describe our Bayesian modeling approach and discuss both the underlying assump-
tions as well as how the number of motion templates can be determined. As the resulting model
is not tractable for analytical solution, we introduce an approximation method based on variational
Bayes.

2.1 Modeling Approach

In our Bayesian approach to Mixtures of Linear Gaussian State-Space Models (LGSSMs), we are
given a set of N time-series1 v1:N

1:T of length T for which we define with the following marginal
likelihood

p(v1:N
1:T |Θ̂1:K , γ) =

∑

z1:N

∫

Θ1:K

p(v1:N
1:T |z1:N , Θ1:K)p(Θ1:K |Θ̂1:K)

∫

π

p(z1:N |π)p(π|γ),

where zn ∈ {1, . . . , K} indicates which of a set of K LGSSMs generated the sequence vn
1:T . The

parameters of LGSSM k are denoted by Θk and have a prior distribution depending on hyperparam-

eters Θ̂k. The K-dimensional vector π includes the prior probabilities of the time-series generation
for each LGSSM and has prior distribution hyperparameter γ.

The optimal hyperparameters are estimated by type-II maximum likelihood [15], i.e., by maximizing

the marginal likelihood over Θ̂1:K and γ. Clustering can be performed by inferring the LGSSM that

most likely generated the sequence vn
1:T by computing argmaxk p(zn = k|v1:N

1:T , Θ̂1:K , γ).

Modeling p(v1:N

1:T
|z1:N

, Θ̂1:K). As a generative temporal model for each time-series, we em-
ploy a Linear Gaussian State-Space Model (LGSSM) [12] that assumes that the observations v1:T ,
with vt ∈ ℜV , are generated from a latent Markovian linear dynamical system with hidden states
h1:T , with ht ∈ ℜH , according to2

vt = Bht + ηv
t , ηv

t ∼ N (0V , ΣV ), ht = Aht−1 + ηh
t , ηh

t ∼ N (µt, ΣH) . (1)

Standard LGSSMs assume a zero-mean hidden-state noise µt ≡ 0H . However with a time-
dependent mean µt 6= 0H a much larger set of systems can be represented, often leading to superior
modeling accuracy – particularly in our application. A probabilistic formulation of the LGSSM is
given by

p(v1:T , h1:T |Θ) = p(v1|h1, Θ)p(h1|Θ)

T
∏

t=2

p(vt|ht, Θ)p(ht|ht−1, Θ),

with p(ht|ht−1, Θ) = N (Aht−1 + µt, ΣH), p(h1|Θ) = N (µ1, Σ), p(vt|ht, Θ) = N (Bht, ΣV ),
and Θ = {A, B, ΣH , ΣV , µ1:T , Σ}. Due to the simple structure of the model, performing inference,
that is to compute quantities such as p(ht|v1:T , Θ), can be efficiently achieved in O(T ) operations.

In the presented Bayesian approach, we define a prior distribution p(Θ|Θ̂) over the parameters Θ

where Θ̂ are the associated hyperparameters. More specifically, we define zero-mean Gaussians on
the elements of A and on the columns of B by3

p
(

A|α, Σ−1
H

)

=

H
∏

i,j=1

α
1/2
ij

√

2π [ΣH ]ii
e−

αij
2 [Σ−1

H ]
ii

A2
ij , p

(

B|β, Σ−1
V

)

=

H
∏

j=1

β
V/2
j

√

|2πΣV |
e−

βj
2 BT

jΣ−1
V

Bj ,

1v1:N
1:T is a shorthand for

�
v1

1:T , . . . , vN
1:T

	
≡
�
v1

1 , . . . , v1

T , . . . , vN
1 , . . . , vN

T

	
.

2Here, N (m, S) denotes a Gaussian with mean m and covariance S, and 0X denotes an X-dimensional
zero vector. The initial latent state h1 is drawn from N (µ1, Σ).

3[X]
ij

and Xj denote the ij-th element and the j-th column of matrix X respectively. The dependency of

the priors on ΣH and ΣV is chosen specifically to render a variational implementation feasible.
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where α and β are a set of hyperparameters which need to be optimized. We make the assumption
that Σ−1

H , Σ−1
V and Σ−1 are diagonal and define Gamma distributions on them. For µ1, we define a

zero-mean Gaussian prior while we determine the optimal values of µ2:T by formally treating them
as hyperparameters. These choices are made in order to render our Bayesian treatment feasible and
to obtain a sparse parametrization, as discussed in details below.

In the resulting mixture model, we consider a set of K such Bayesian LGSSMs. The joint distribu-
tion over all sequences given the indicator variables and hyperparameters is defined as

p(v1:N
1:T |z1:N , Θ̂1:K) =

∫

Θ1:K

{

N
∏

n=1

p(vn
1:T |z

n, Θ1:K)

}

K
∏

k=1

p(Θk|Θ̂k),

where p(vn
1:T |z

n = k, Θ1:K) ≡ p(vn
1:T |Θ

k) denotes the probability of observation vn
1:T given that

parameters Θk have been employed to generate it.

Modeling p
(

z
1:N |γ

)

. As prior for π, we define a symmetric Dirichlet distribution

p(π|γ) =
Γ (γ)

Γ(γ/K)K

K
∏

k=1

π
γ/K−1
k ,

where Γ(·) is the Gamma function and γ denotes a hyperparameter that needs to be optimized. This
distribution is conjugate to the multinomial, which greatly simplifies our Bayesian treatment. To
model the joint indicator variables, we define

p(z1:N |γ) =

∫

π

{

N
∏

n=1

p(zn|π)

}

p(π|γ), where p(zn = k|π) ≡ πk.

Such Bayesian approach favors simple model structures. In particular, the priors on A1:K and
B1:K enforce a sparse parametrization since, during learning, many αij and βj get close to in-
finity whereby (the posterior distribution of) Aij and Bj get close to zero (see [16] for an analysis
of this pruning effect). For certain k, all elements are pruned out during learning such that LGSSM

k becomes inactive (p(zn = k|v1:N
1:T , Θ̂1:K , γ) = 0 for all n). This means that, even if we initialize

the model with a fixed number of LGSSMs, our approach ensures that the unnecessary LGSSMs are
pruned out from the model during training. Thus, the optimal number of clusters is automatically
determined within the model in such a way that it yields a simple solution that explains the data
well.

2.2 Model Intractability and Approximate Solution

The Bayesian treatment of the model is non-trivial as the integration over the parameters Θ1:K and π
renders the computation of the required posterior distributions intractable. This problem results from
the coupling in the posterior distributions between the hidden state variables h1:N

1:T and the parameters

Θ1:K as well as between the indicators z1:N and π, Θ1:K . To deal with this intractability, we use a
deterministic approximation method based on variational Bayes.

Variational Approximation. In our variational approach we introduce a new distribution q and
make the following approximation4

p(z1:N , h1:N
1:T , Θ1:K |v1:N

1:T , Θ̂1:K , γ) ≈ q(h1:N
1:T |z1:N )q(z1:N)q(Θ1:K). (2)

That is, we approximate the posterior distribution of the hidden variables of the model by one in
which the hidden states are decoupled from the parameters given the indicator variables and in
which the indicators are decoupled from the parameters.

The approximation is achieved with a variational expectation-maximization algorithm which min-
imizes the KL divergence between the right and left hand sides of Equation (2), or, equivalently,

4Here, we describe a collapsed approximation over π, which is considered more powerful than the alterna-

tive un-collapsed approximation [17]. To simplify the notation, we omit conditioning on v1:N
1:T , Θ̂1:K , γ for the

q distribution.
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Figure 1: This figure shows one of the Balero motion templates found by our clustering method,
i.e., the cluster C2 in Figure 2. Here, a sideways movement with a subsequent catch is performed
and the uppermost row illustrates this movement with a symbolic sketch. The middle row shows an
execution of the movement generated with the LGSSM representing the cluster C2. The lowest row
shows a recorded human movement which was attributed to cluster C2 by our method. Note that
movements generated from LGSSMs representing other clusters differ significantly.

maximizes a tractable lower bound on the log-likelihood log p(v1:N
1:T |Θ̂1:K , γ) ≥ F(Θ̂1:K , γ, q) with

respect to q for fixed Θ̂1:K and γ and vice-versa. Observation vn
t is then placed in the most likely

LGSSM by computing arg maxk q(zn = k).

Resulting Updates. While the space does not suffice for complete derivation, we will briefly
sketch the updates for q. Additional details and the updates for the hyperparameters can be found
in [20]. The updates consist of a parameter update, an indicator variable update and a latent state
update. First, the approximate parameter posterior is given by

q(Θk) ∝ p(Θk|Θ̂k)e

P
N
n=1 q(zn=k)〈log p(vn

1:T ,hn
1:T |Θk)〉

q(hn
1:T

|zn=k) ,

where 〈·〉q denotes expectation with respect to q. The specific choice for p(Θk|Θ̂k) makes the

computation of this posterior relatively straightforward, since q(Θk) is a distribution of the same
type. Second, the approximate posterior over the indicator variables is given by

q(zn = k) ∝ e
Hq(hn

1:T |zn=k)+〈log p(zn=k|z¬n,γ)〉Q
m 6=n q(zm)e

〈log p(vn
1:T ,hn

1:T |Θk)〉
q(hn

1:T
|zn=k)q(Θk) ,

where Hq(x) denotes the entropy of the distribution q(x) and z¬n includes all indicator variables
except for zn. Due to the choice of a Dirichlet prior, the term p(zn = k|z¬n, γ) =

∫

π
p(zn =

k|z¬n, π)p(π, γ) can be determined analytically. However, the required average over this term is
computationally expensive, and, thus, we approximate it using a second order expansion [17]. The
third and most challenging update is the one of the hidden states

q (hn
1:T |z

n = k) ∝ e
〈log p(vn

1:T ,hn
1:T |Θk)〉

q(Θk) . (3)

Whilst computing this joint density is relatively straightforward, the parameter and indicator variable
updates require the non-trivial estimation of the posterior averages 〈hn

t 〉 and
〈

hn
t hn

t−1

〉

with respect
to this distribution. Following a similar approach to the one proposed in [18] for the Bayesian
LGSSM, we reformulate the rhs of Equation (3) as proportional to the distribution of an augmented
LGSSM such that standard LGSSM inference routines in the literature can be used.

3 Results

In this section, we show that the model presented in Section 2 can be used effectively both for
inferring the motion templates underlying a set of human trajectories and for approximating motion
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Figure 2: In this figure, we show nine plots where each plot represents one cluster found by our
method. Each of the five shown trajectories in the respective clusters represents a different recorded
Balero movement. For better visualization, we do not show joint trajectories here but rather the
trajectories of the cup which have an easier physical interpretation and, additionally, reveal the
differences between the isolated clusters. All axes show units in meters.

templates with dynamical systems. For doing so, we take a difficult task often used in the motor
control literature, i.e., Balero, and collect human movements using a motion capture setup. We
show that the presented model successfully extracts meaningful human motion templates underlying
Balero, and that the movements generated by the model are successful in simulation of the Balero
task on an anthropomorphic SARCOS arm.

3.1 Data Generation of Balero Motions

As experimental benchmark, we use the children motor learning toy of Balero, also known as Ball-
In-A-Cup or Kendama. In this game, a human is given a toy consisting of a cup with a ball attached
by a string. The goal of the human is to toss the ball into the cup. Humans perform a wide variety of
different movements in order to achieve this task [14]. For example, three very distinct movements
are: (i) swing the hand slightly upwards to the side and then go back to catch the ball, (ii) hold the
cup high and then move very fast to catch the ball, and (iii) jerk the cup upwards and catch the ball
in a fast downwards movement. Whilst the difference in these three movements is significant and
can be easily detected visually, there exist many other movements for which this is not the case.

We collected 124 different Balero trajectories where the subject was free to select the employed
movement. For doing so, we used a VICONTM data collection system which samples the trajecto-
ries at 200Hz to track both the cup as well as all seven major degrees of freedom of the human arm.
The data was preprocessed upon data collection. For the evaluation of our method, we considered
the seven joint angles of the human presenter as well as the corresponding seven estimated joint
velocities.

In the lowest row of Figure 1, we show how the human motion is collected with a VICONTM motion
tracking setup. As we will see later, this specific movement is assigned by our method to cluster C2
whose representative generative LGSSM can be used successfully for imitating this motion (middle
row). A sketch of the represented movement is shown in the top row of Figure 1.

3.2 Clustering and Imitation of Motion Templates

We trained the variational method with different initial conditions with hidden dimension H = 35
and number of clusters K which varied from 20 to 50 in order to avoid suboptimal results due to
local maxima.

Our clustering method results in nine different motion templates. These are plotted in Figure 2,
where, instead of the 14-dimensional joint angles and velocities represented by our motion template,
we show the three-dimensional cup trajectories resulting from these joint movements, as it is easier
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Figure 3: (a) Time-series recorded from two executions of the Balero movement assigned by our
model to cluster C1. In the first and second rows are plotted the positions and velocities respec-
tively. (b) Two executions of the Balero movement generated by our trained model using probability
distributions of cluster C1.

for humans to make sense of cartesian trajectories. Clusters C1, C2 and C3 are movements to the
side which subsequently catch the ball. Here, C1 is a short jerk, C3 appears to have a circular
movement similar to a jerky movement, while C2 uses a longer but smoother movement to induce
kinetic energy in the ball. Motion templates C4 and C5 are dropping movements where the cup
moves down fast for more than 1.2m and then catches the ball. The template C5 is a smoother
movement than C4 with a wider catching movement. For C6 and C7, we observe a significantly
different movement where the cup is jerked upwards dragging the ball in this direction and then
catches the ball on the way down. Clusters C8 and C9 exhibit the most interesting movement where
the main motion is forward-backwards and the ball swings into the cup. In C8 this task is achieved
by moving upwards at the same time while in C9 there is little loss of height.

To generate Balero movements with our trained model, we can use the recursive formulation of the
LGSSM given by Equation 1 where, for each cluster k, Ak, Bk and µk are replaced by the mean
values of their Gaussian q posterior distributions, while the noise covariances are replaced by the
modes of their Gamma q posteriors. The initial hidden state h1 and the noise elements ηh

t and ηv
t

are sampled from their respective distributions.

In Figure 3 (a) we plotted two recorded executions of the Balero movement assigned by our model to
cluster C1, while in Figure 3 (b) we plotted two executions generated by our model using the learned
distributions from cluster C1. As we can see, our model can generate time-series with very similar
dynamics to the ones of the recorded time-series and is thus well-suited for imitation learning. The
resulting motor templates are accurate enough for use in a physically realistic simulation of a Balero
task, as shown in Figure 1 for cluster C2 (middle row) and in the video on the author’s website.
Please note that a small visual feedback term based on a Jacobian transpose method was activated
when the ball was within 3cm in order to ensure task-fulfillment; this additional term was inspired
by Miyamoto et al. [19] and only results in a minor correction.

4 Conclusions

In this paper, we addressed the problem of automatic generation of skill libraries for both robot
learning and human motion analysis as a unsupervised multidimensional time-series clustering and
learning problem based on human trajectories. We have introduced a novel Bayesian temporal
mixture model based on a variational approximation method which is especially designed to enable
the use of efficient inference algorithms. We demonstrated that our model obtain a meaningful
clustering of human executions of the difficult game of dexterity Balero and is able to generate time-
series which are very close to the recorded ones. Finally, we have shown that the model can be used
to obtain successful executions of the Balero movements on a physically realistic simulation of the
SARCOS Master Arm.
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