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Inference and estimation in probabilistic time series

models

David Barber, A. Taylan Cemgil and Silvia Chiappa

1.1 Time series

The term ‘time series’ refers to data that can be represented as a sequence. This includes

for example financial data in which the sequence index indicates time, and genetic data

(e.g. ACATGC . . .) in which the sequence index has no temporal meaning. In this tutorial

we give an overview of discrete-time probabilistic models, which are the subject of most

chapters in this book, with continuous-time models being discussed separately in Chapters

4, 6, 11 and 17. Throughout our focus is on the basic algorithmic issues underlying time

series, rather than on surveying the wide field of applications.

Defining a probabilistic model of a time series y1:T ≡ y1, . . . , yT requires the specifica-

tion of a joint distribution p(y1:T ).1 In general, specifying all independent entries of p(y1:T )

is infeasible without making some statistical independence assumptions. For example, in

the case of binary data, yt ∈ {0, 1}, the joint distribution contains maximally 2T −1 indepen-

dent entries. Therefore, for time series of more than a few time steps, we need to introduce

simplifications in order to ensure tractability. One way to introduce statistical independence

is to use the probability of a conditioned on observed b

p(a|b) =
p(a, b)

p(b)
.

Replacing a with yT and b with y1:T−1 and rearranging we obtain p(y1:T ) =

p(yT |y1:T−1)p(y1:T−1). Similarly, we can decompose p(y1:T−1) = p(yT−1|y1:T−2)p(y1:T−2). By

repeated application, we can then express the joint distribution as2

p(y1:T ) =

T∏

t=1

p(yt |y1:t−1).

This factorisation is consistent with the causal nature of time, since each factor represents

a generative model of a variable conditioned on its past. To make the specification simpler,

we can impose conditional independence by dropping variables in each factor conditioning

set. For example, by imposing p(yt |y1:t−1) = p(yt |yt−m:t−1) we obtain the mth-order Markov

model discussed in Section 1.2.

1To simplify the notation, throughout the tutorial we use lowercase to indicate both a random variable and its

realisation.
2We use the convention that y1:t−1 = ∅ if t < 2. More generally, one may write pt(yt |y1:t−1), as we generally

have a different distribution at each time step. However, for notational simplicity we generally omit the time index.
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Figure 1.1 Belief network representations of two time series models. (a) First-order Markov model p(y1:4) =

p(y4 |y3)p(y3 |y2)p(y2 |y1)p(y1). (b) Second-order Markov model p(y1:4) = p(y4 |y3, y2)p(y3 |y2, y1)p(y2 |y1)p(y1).

A useful way to express statistical independence assumptions is to use a belief network

graphical model which is a directed acyclic graph3 representing the joint distribution

p(y1:N) =

N∏

i=1

p(yi|pa (yi)) ,

where pa (yi) denotes the parents of yi, that is the variables with a directed link to yi. By

limiting the parental set of each variable we can reduce the burden of specification. In

Fig. 1.1 we give two examples of belief networks corresponding to a first- and second-

order Markov model respectively, see Section 1.2. For the model p(y1:4) in Fig. 1.1(a) and

binary variables yt ∈ {1, 2} we need to specify only 1 + 2 + 2 + 2 = 7 entries4, compared to

24 − 1 = 15 entries in the case that no independence assumptions are made.

Inference

Inference is the task of using a distribution to answer questions of interest. For example,

given a set of observations y1:T , a common inference problem in time series analysis is the

use of the posterior distribution p(yT+1|y1:T ) for the prediction of an unseen future variable

yT+1. One of the challenges in time series modelling is to develop computationally effi-

cient algorithms for computing such posterior distributions by exploiting the independence

assumptions of the model.

Estimation

Estimation is the task of determining a parameter θ of a model based on observations y1:T .

This can be considered as a form of inference in which we wish to compute p(θ|y1:T ).

Specifically, if p(θ) is a distribution quantifying our beliefs in the parameter values before

having seen the data, we can use Bayes’ rule to combine this prior with the observations to

form a posterior distribution

p(θ|y1:T )
︸   ︷︷   ︸

posterior

=

p(y1:T |θ)
︸   ︷︷   ︸

likelihood

p(θ)
︸︷︷︸

prior

p(y1:T )
︸ ︷︷ ︸

marginal likelihood

.

The posterior distribution is often summarised by the maximum a posteriori (MAP) point

estimate, given by the mode

θMAP = argmax
θ

p(y1:T |θ)p(θ).

3A directed graph is acyclic if, by following the direction of the arrows, a node will never be visited more than

once.
4For example we need one specification for p(y1 = 1), with p(y1 = 2) = 1 − p(y1 = 1) determined by

normalisation. Similarly, we need two states for p(y2 |y1).
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It can be computationally more convenient to use the log posterior,

θMAP = argmax
θ

log (p(y1:T |θ)p(θ)) ,

where the equivalence follows from the monotonicity of the log function. When using a

‘flat prior’ p(θ) = const., the MAP solution coincides with the maximum likelihood (ML)

solution

θML = argmax
θ

p(y1:T |θ) = argmax
θ

log p(y1:T |θ).

In the following sections we introduce some popular time series models and describe

associated inference and parameter estimation routines.

1.2 Markov models

Markov models (or Markov chains) are of fundamental importance and underpin many

time series models [21]. In an mth order Markov model the joint distribution factorises as

p(y1:T ) =

T∏

t=1

p(yt |yt−m:t−1),

expressing the fact that only the previous m observations yt−m:t−1 directly influence yt. In a

time-homogeneous model, the transition probabilities p(yt |yt−m:t−1) are time-independent.

1.2.1 Estimation in discrete Markov models

In a time-homogeneous first-order Markov model with discrete scalar observations yt ∈
{1, . . . , S }, the transition from yt−1 to yt can be parameterised using a matrix θ, that is

θ ji ≡ p(yt = j|yt−1 = i, θ), i, j ∈ {1, . . . , S } .

Given observations y1:T , maximum likelihood sets this matrix according to

θML = argmax
θ

log p(y1:T |θ) = argmax
θ

∑

t

log p(yt |yt−1, θ).

Under the probability constraints 0 ≤ θ ji ≤ 1 and
∑

j θ ji = 1, the optimal solution is given

by the intuitive setting

θML
ji =

n ji

T − 1
,

where n ji is the number of transitions from i to j observed in y1:T .

Alternatively, a Bayesian treatment would compute the parameter posterior distribution

p(θ|y1:T ) ∝ p(θ)p(y1:T |θ) = p(θ)
∏

i, j

θ
n ji

ji
.

In this case a convenient prior for θ is a Dirichlet distribution on each column θ: i with

hyperparameter vector α: i

p(θ) =
∏

i

DI(θ: i|α: i) =
∏

i

1

Z(α: i)

∏

j

θ
α ji−1

ji
,
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Figure 1.2 Maximum likelihood fit of a third-order AR model.

The horizontal axis represents time, whilst the vertical axis the

value of the time series. The dots represent the 100 observations

y1:100. The solid line indicates the mean predictions 〈y〉t , t >

100, and the dashed lines 〈y〉t ±
√

r.

where Z(α: i) =
∫ 1

0

∏

j θ
α ji−1

i j
dθ. The convenience of this ‘conjugate’ prior is that it gives a

parameter posterior that is also a Dirichlet distribution [15]

p(θ|y1:T ) =
∏

i

DI(θ: i|α: i + n: i).

This Bayesian approach differs from maximum likelihood in that it treats the parameters as

random variables and yields distributional information. This is motivated from the under-

standing that for a finite number of observations there is not necessarily a ‘single best’

parameter estimate, but rather a distribution of parameters weighted both by how well they

fit the data and how well they match our prior assumptions.

1.2.2 Autoregressive models

A widely used Markov model of continuous scalar observations is the autoregressive (AR)

model [2, 4]. An mth-order AR model assumes that yt is a noisy linear combination of the

previous m observations, that is

yt = a1yt−1 + a2yt−2 + · · · + amyt−m + ǫt,

where a1:m are called the AR coefficients, and ǫt is an independent noise term commonly

assumed to be zero-mean Gaussian with variance r (indicated with N(ǫt |0, r)). A so-called

generative form for the AR model with Gaussian noise is given by5

p(y1:T |y1:m) =

T∏

t=m+1

p(yt |yt−m:t−1), p(yt |yt−m:t−1) = N
(

yt

∣
∣
∣
∣

m∑

i=1

aiyt−i, r
)

.

Given observations y1:T , the maximum likelihood estimate for the parameters a1:m and r is

obtained by maximising with respect to a and r the log likelihood

log p(y1:T |y1:m) = − 1

2r

T∑

t=m+1

(

yt −
m∑

i=1

aiyt−i

)2
− T − m

2
log(2πr).

The optimal a1:m are given by solving the linear system

∑

i

ai

T∑

t=m+1

yt−iyt− j =

T∑

t=m+1

ytyt− j ∀ j.

5Note that the first m variables are not modelled.
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Figure 1.3 (a) Belief network representation of a first-order AR model with parameters θ = (a1, r) (first four time

steps). (b) Parameter prior p(a1, r) (light grey, dotted) and posterior p(a1, r|y1 = 1, y2 = −6) (black). The posterior

describes two plausible explanations of the data: (i) the noise r is low and a1 ≈ −6, (ii) the noise r is high with a

set of possible values for a1 centred around zero.

which is readily solved using Gaussian elimination. The linear system has a Toeplitz form

that can be more efficiently solved, if required, using the Levinson-Durbin method [9]. The

optimal variance is then given by

r =
1

T − m

T∑

t=m+1

(

yt −
m∑

i=1

aiyt−i

)2
.

The case in which yt is multivariate can be handled by assuming that ai is a matrix and ǫt is

a vector. This generalisation is known as vector autoregression.

Example 1 We illustrate with a simple example how AR models can be used to estimate

trends underlying time series data. A third-order AR model was fit to the set of 100 obser-

vations shown in Fig. 1.2 using maximum likelihood. A prediction for the mean 〈y〉t was

then recursively generated as

〈y〉t =
{ ∑3

i=1 ai 〈y〉t−i for t > 100,

yt for t ≤ 100 .

As we can see (solid line in Fig. 1.2), the predicted means for time t > 100 capture an

underlying trend in the time series.

Example 2 In a MAP and Bayesian approach, a prior on the AR coefficients can be used

to define physical constraints (if any) or to regularise the system. Similarly, a prior on the

variance r can be used to specify any knowledge about or constraint on the noise. As an

example, consider a Bayesian approach to a first-order AR model in which the following

Gaussian prior for a1 and inverse Gamma prior for r are defined:

p(a1) = N (a1 0, q) ,

p(r) = IG(r|ν, ν/β) = exp

[

−(ν + 1) log r − ν

βr
− logΓ(ν) + ν log

ν

β

]

.
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yt−1 yt yt+1

· · · xt−1 xt xt+1 · · ·
Figure 1.4 A first-order latent Markov model. In a hidden

Markov model the latent variables x1:T are discrete and the

observed variables y1:T can be either discrete or continuous.

Assuming that a1 and r are a priori independent, the joint distribution is given by

p(a1, r|y1:T ) ∝ p(a1)p(r)

T∏

t=2

p(yt |yt−1, a1, r).

The belief network representation of this model is given in Fig. 1.3(a). For a numerical

example, consider T = 2 and observations and hyperparameters given by

y1 = 1, y2 = −6, q = 1.2, ν = 0.4, β = 100.

The parameter posterior, Fig. 1.3(b), takes the form

p(a1, r|y1:2) ∝ exp



−




ν

β
+

y2
2

2





1

r
+ y1y2

a1

r
− 1

2





y2
1

r
+

1

q



 a2
1 − (ν + 3/2) log r



 ,

As we can see, the posterior is multimodal, with each mode corresponding to a different

interpretation: (i) The regression coefficient a1 is approximately −6 and the noise is low.

This solution gives a small prediction error. (ii) Since the prior for a1 has zero mean, an

alternative interpretation is that a1 is centred around zero and the noise is high.

From this example we can make the following observations:

• Point estimates such as ML or MAP are not always representative of the solution.

• Even very simple models can lead to complicated posterior distributions.

• Variables that are independent a priori may become dependent a posteriori.

• Ambiguous data usually leads to a multimodal parameter posterior, with each mode

corresponding to one plausible explanation.

1.3 Latent Markov models

In a latent Markov model, the observations y1:T are generated by a set of unobserved or

‘latent’ variables x1:T . Typically, the latent variables are first-order Markovian and each

observed variable yt is independent from all other variables given xt. The joint distribution

thus factorises as6

p(y1:T , x1:T ) = p(x1)

T∏

t=2

p(yt |xt)p(xt |xt−1),

where p(xt |xt−1) is called the ‘transition’ model and p(yt |xt) the ‘emission’ model. The

belief network representation of this latent Markov model is given in Fig. 1.4.

6This general form is also known as a state space model.
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Figure 1.5 (a) Robot (square) moving sporadically with probabil-

ity 1− ǫ counter-clockwise in a circular corridor one location at a

time. Small circles denote the S possible locations. (b) The state

transition diagram for a corridor with S = 3 possible locations.

1.3.1 Discrete state latent Markov models

A well-known latent Markov model is the hidden Markov model7 (HMM) [23] in which xt

is a scalar discrete variable (xt ∈ {1, . . . , S }).

Example Consider the following toy tracking problem. A robot is moving around a cir-

cular corridor and at any time occupies one of S possible locations. At each time step t, the

robot stays where it is with probability ǫ, or moves to the next point in a counter-clockwise

direction with probability 1 − ǫ. This scenario, illustrated in Fig. 1.5, can be conveniently

represented by an S × S matrix A with elements A ji = p(xt = j|xt−1 = i). For example, for

S = 3, we have

A = ǫ





1 0 0

0 1 0

0 0 1




+ (1 − ǫ)





0 0 1

1 0 0

0 1 0




. (1.1)

At each time step t, the robot sensors measure its position, obtaining either the correct

location with probability w or a uniformly random location with probability 1−w. This can

be expressed formally as

yt |xt ∼ wδ(yt − xt) + (1 − w)U(yt |1, . . . , S ),

where δ is the Kronecker delta function andU(y|1, . . . , S ) denotes the uniform distribution

over the set of possible locations. We may parameterise p(yt |xt) using an S × S matrix C

with elements Cui = p(yt = u|xt = i). For S = 3, we have

C = w





1 0 0

0 1 0

0 0 1




+

(1 − w)

3





1 1 1

1 1 1

1 1 1




.

A typical realisation y1:T from the process defined by this HMM with S = 50, ǫ = 0.5,

T = 30 and w = 0.3 is depicted in Fig. 1.6(a). We are interested in inferring the true loca-

tions of the robot from the noisy measured locations y1:T . At each time t, the true location

can be inferred from the so-called ‘filtered’ posterior p(xt |y1:t) (Fig. 1.6(b)), which uses

measurements up to t; or from the so-called ‘smoothed’ posterior p(xt |y1:T ) (Fig. 1.6(c)),

which uses both past and future observations and is therefore generally more accurate.

These posterior marginals are obtained using the efficient inference routines outlined in

Section 1.4.

7Some authors use the terms hidden Markov model and state space model as synonymous [4]. We use the term

HMM in a more restricted sense to refer to a latent Markov model where x1:T are discrete. The observations y1:T

can be discrete or continuous.
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(a) (b) (c)

Figure 1.6 Filtering and smoothing for robot tracking using a HMM with S = 50. (a) A realisation from the

HMM example described in the text. The dots indicate the true latent locations of the robot, whilst the open

circles indicate the noisy measured locations. (b) The squares indicate the filtering distribution at each time step

t, p(xt |y1:t). This probability is proportional to the grey level with black corresponding to 1 and white to 0. Note

that the posterior for the first time steps is multimodal, therefore the true position cannot be accurately estimated.

(c) The squares indicate the smoothing distribution at each time step t, p(xt |y1:T = y1:T ). Note that, for t < T ,

we estimate the position retrospectively and the uncertainty is significantly lower when compared to the filtered

estimates.

1.3.2 Continuous state latent Markov models

In continuous state latent Markov models, xt is a multivariate continuous variable, xt ∈ RH .

For high-dimensional continuous xt, the set of models for which operations such as filtering

and smoothing are computationally tractable is severely limited. Within this tractable class,

the linear dynamical system plays a special role, and is essentially the continuous analogue

of the HMM.

Linear dynamical systems

A linear dynamical system (LDS) on variables x1:T , y1:T has the following form:

xt = Axt−1 + x̄t + ǫ
x
t , ǫ x

t ∼ N
(

ǫ x
t 0,Q

)

, x1 ∼ N (x1 µ, P) ,

yt = Cxt + ȳt + ǫ
y
t , ǫ

y
t ∼ N

(

ǫ
y
t 0,R

)

,

with transition matrix A and emission matrix C. The terms x̄t, ȳt are often defined as x̄t =

Bzt and ȳt = Dzt, where zt is a known input that can be used to control the system. The

complete parameter set is therefore {A, B,C,D,Q,R, µ, P}. As a generative model, the LDS

is defined as

p(xt |xt−1) = N (xt Axt−1 + x̄t,Q) , p(yt |xt) = N (yt Cxt + ȳt,R) .

Example As an example scenario that can be modelled using an LDS, consider a moving

object with position, velocity and instantaneous acceleration at time t given respectively by

qt, vt and at. A discrete time description of the object dynamics is given by Newton’s laws

(see for example [11])
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Figure 1.7 Tracking an object undergoing Newtonian dynamics in a two-dimensional space, Eq. (1.2). (a) The

dots indicate the true latent positions of the object at each time t, q1,t (horizontal axis) and q2,t (vertical axis) (the

time label is not shown). The crosses indicate the noisy observations of the latent positions. (b) The circles indicate

the mean of the filtered latent positions
∫

qt p(qt |y1:t)dqt . (c) The circles indicate the mean of the smoothed latent

positions
∫

qt p(qt |y1:T )dqt .

(

qt

vt

)

︸︷︷︸

=

(

I TsI

0 I

)

︸    ︷︷    ︸

(

qt−1

vt−1

)

︸︷︷︸

+

(
1
2
T 2

s I

TsI

)

︸ ︷︷ ︸

at

xt = A xt−1 + B at,

(1.2)

where I is the 3 × 3 identity matrix and Ts is the sampling period. In tracking applications,

we are interested in inferring the true position qt and velocity vt of the object from lim-

ited noisy information. For example, in the case that we observe only the noise-corrupted

positions, we may write

p(xt |xt−1) = N (xt Axt−1 + Bā,Q) , p(yt |xt) = N (yt Cxt,R) ,

where ā is the acceleration mean, Q = BΣB⊤ with Σ being the acceleration covariance,

C = (I 0), and R is the covariance of the position noise. We can then track the position and

velocity of the object using the filtered density p(xt |y1:t). An example with two-dimensional

positions is shown in Fig. 1.7.

AR model as an LDS

Many popular time series models can be cast into a LDS form. For example, the AR model

of Section 1.2.2 can be formulated as





yt

yt−1

...

yt−m+1





︸      ︷︷      ︸

=





a1 a2 . . . am

1 0 0 0

0
. . . 0 0

0 0 1 0





︸                       ︷︷                       ︸





yt−1

yt−2

...

yt−m





︸    ︷︷    ︸

+





ǫt

0
...

0





︸︷︷︸

xt = A xt−1 + ǫ x
t ,

yt =
(

1 0 . . . 0
)

︸                 ︷︷                 ︸

C

xt + ǫ
y
t ,
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where ǫ x
t ∼ N

(

ǫ x
t 0, diag(r, 0, . . . , 0)

)

, ǫ
y
t ∼ N

(

ǫ
y
t 0, 0

)

, the initial mean µ is set to the first

m observations, and P = 0. This shows how to transform an mth-order Markov model into a

constrained first-order latent Markov model. Many other related AR models and extensions

can also be cast as a latent Markov model. This is therefore a very general class of models

for which inference is of particular interest.

1.4 Inference in latent Markov models

In this section we derive computationally efficient methods for computing posterior dis-

tributions in latent Markov models. We assume throughout that xt is discrete, though

the recursions hold more generally on replacing summation with integration for those

components of xt that are continuous.

1.4.1 Filtering p(xt |y1:t)

In filtering,8 the aim is to compute the distribution of the latent variable xt given all

observations up to time t. This can be expressed as

p(xt |y1:t) = p(xt, y1:t)/p(y1:t).

The normalising term p(y1:t) is the likelihood, see Section 1.4.2, and α(xt) ≡ p(xt, y1:t) can

be computed by a ‘forward’ recursion

α(xt) = p(yt |xt,✘✘✘y1:t−1)p(xt, y1:t−1)

= p(yt |xt)
∑

xt−1

p(xt |xt−1,✘✘✘y1:t−1)p(xt−1, y1:t−1)

= p(yt |xt)
∑

xt−1

p(xt |xt−1)α(xt−1), (1.3)

where the cancellations follow from the conditional independence assumptions of the

model. The recursion is initialised with α(x1) = p(y1|x1)p(x1). To avoid numerical over/un-

derflow problems, it is advisable to work with logα(xt). If only the conditional distribution

p(xt |y1:t) is required (not the joint p(xt, y1:t)) a numerical alternative to using the logarithm

is to form a recursion for p(xt |y1:t) directly by normalising α(xt) at each stage.

1.4.2 The likelihood

The likelihood can be computed using the filtered results as

p(y1:t) =
∑

xt

α(xt), and p(y1:T ) =
∑

xT

α(xT ).

Maximum likelihood parameter learning can be carried out by the expectation maximisa-

tion algorithm, known in the HMM context as the Baum-Welch algorithm [23], see also

Section 1.5.1.

8The term ‘filtering’ is somewhat a misnomer since in signal processing this term is reserved for a convolution

operation. However, for linear systems, it turns out that state estimation is a linear function of past observations

and can indeed be computed by a convolution, partially justifying the use of the term.



9780521196765book CUP/BRBR May 24, 2011 13:44 Page-11

Probabilistic time series models 11

1.4.3 Smoothing p(x1:T |y1:T )

The smoothing distribution is the joint distribution p(x1:T |y1:T ). Typically we are interested

in marginals such as p(xt |y1:T ), which gives an estimate of xt based on all observations.

There are two main approaches to computing p(xt |y1:T ), namely the parallel and the

sequential methods described below.

Parallel smoothing p(xt |y1:T )

In parallel smoothing, the posterior γ(xt) ≡ p(xt |y1:T ) is separated into contributions from

the past and future

γ(xt) ∝ p(xt, y1:t)
︸    ︷︷    ︸

past

p(yt+1:T |xt,✟✟y1:t)
︸            ︷︷            ︸

future

= α(xt)β(xt). (1.4)

The term α(xt) is obtained from the filtering recursion (1.3). The terms β(xt) can be obtained

by the following ‘backward’ recursion

β(xt) =
∑

xt+1

p(yt+1|✘✘✘yt+2:T ,✚xt, xt+1)p(yt+2:T , xt+1|xt)

=
∑

xt+1

p(yt+1|xt+1)p(yt+2:T |,✚xt, xt+1)p(xt+1|xt)

=
∑

xt+1

p(yt+1|xt+1)p(xt+1|xt)β(xt+1), (1.5)

with β(xT ) = 1. As for filtering, working in log space for β is recommended to avoid

numerical difficulties.9 The α − β recursions are independent and may therefore be run in

parallel. These recursions also are called the forward-backward algorithm.

Sequential smoothing p(xt |y1:T )

In sequential smoothing, we form a direct recursion for the smoothed posterior as

γ(xt) =
∑

xt+1

p(xt, xt+1|y1:T ) =
∑

xt+1

p(xt |xt+1, y1:t,✘✘✘yt+1:T )γ(xt+1), (1.6)

with γ(xT ) ∝ α(xT ). The term p(xt |xt+1, y1:t) is computed from filtering using

p(xt |xt+1, y1:t) ∝ p(xt+1|xt)α(xt),

where the proportionality constant is found by normalisation. The procedure is sequential

since we need to complete the α recursions before starting the γ recursions. This technique

is also termed the Rauch–Tung–Striebel smoother10 and is a so-called correction smoother

since it ‘corrects’ the filtered results. Interestingly, this correction process uses only filtered

information. That is, once the filtered results have been computed, the observations y1:T are

no longer needed. One can also view the γ recursion as a form of dynamics reversal, as if

we were reversing the direction of the hidden-to-hidden arrows in the model.

9If only posterior distributions are required, one can also perform local normalisation at each stage, since only

the relative magnitude of the components of β is of importance.
10It is most common to use this terminology for the continuous latent variable case.
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Computing the pairwise marginal p(xt, xt+1|y1:T )

To implement algorithms for parameter learning, we often require terms such as

p(xt, xt+1|y1:T ), see Section 1.5.1. These can be obtained from the sequential approach using

p(xt, xt+1|y1:T ) = p(xt |xt+1, y1:t)p(xt+1|y1:T ),

or from the parallel approach using

p(xt, xt+1|y1:T ) ∝ β(xt+1)p(yt+1|xt+1)p(xt+1|, xt)α(xt). (1.7)

1.4.4 Prediction p(yt+1|y1:t)

Prediction is the problem of computing the posterior density p(yτ|y1:t) for any τ > t. For

example, the distribution of the next observation may be found using

p(yt+1|y1:t) =
∑

xt+1

p(yt+1|xt+1)p(xt+1|y1:t) =
∑

xt+1

p(yt+1|xt+1)
∑

xt

p(xt+1|xt)p(xt |y1:t).

1.4.5 Interpolation

Interpolation is the problem of estimating a set of missing observations given past and

future data. This can be achieved using

p(yτ|y1:τ−1, yτ+1:T ) ∝
∑

xτ

p(yτ|xτ)p(xτ|y1:τ−1)p(yτ+1:T |xτ).

1.4.6 Most likely latent trajectory

The most likely latent trajectory that explains the observations is given by

x∗1:T = argmax
x1:T

p(x1:T |y1:T ).

In the literature x∗
1:T

is also called the Viterbi path. Since y1:T is known, x∗
1:T

is equivalent

to argmax
x1:T

p(x1:T , y1:T ). By defining δ(xt) ≡ maxx1:t−1
p(x1:t, y1:t), the most likely trajectory

can be obtained with the following algorithm:

δ(x1) = p(x1, y1), δ(xt) = p(yt |xt, yt−k+1:t) max
xt−1

p(xt |xt−1)δ(xt−1) for t = 2, . . . ,T,

ψ(xt) = argmax
xt−1

p(xt |xt−1)δ(xt−1) for t = 2, . . . ,T,

x∗T = argmax
xT

δ(xT ), x∗t = ψ(x∗t+1) for t = T − 1, . . . , 1,

where the recursion for δ(xt) is obtained analogously to the recursion (1.3) by replacing the

sum with the max operator.

1.4.7 Inference in the linear dynamical system

Inference in the LDS has a long history and widespread applications ranging from tracking

and control of ballistic projectiles to decoding brain signals.11 The filtered and smoothed

11The LDS and associated filtering algorithm was proposed by Kalman in the late 1950s [14] based on least

squares estimates. It is interesting to note that the method also appeared almost concurrently in the Russian

literature, in a form that is surprisingly similar to the modern approach in terms of Bayes recursions [25]. Even

earlier in the 1880s, Thiele defined the LDS and associated filtering and smoothing recursions [16].
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posterior marginals, can be computed through conditioning and marginalisation of Gaus-

sian distributions. The key results required for algebraic manipulation of Gaussians are

stated below.

Gaussian conditioning, marginalisation and linear transformation

A multivariate Gaussian distribution is defined in the so-called moment form by

p(x) = N (x µ,Σ) ≡ 1
√

det 2πΣ
e−

1
2

(x−µ)TΣ−1(x−µ),

where µ is the mean vector, and Σ is the covariance matrix.

Consider a vector z partitioned into two subvectors x and y,

z =

(

x

y

)

,

and a Gaussian distributionN (z µ,Σ) with corresponding partitioned mean and covariance

µ =

(

µx

µy

)

, Σ =

(

Σxx Σxy

Σyx Σyy

)

, Σyx ≡ ΣT
xy.

The distribution of x conditioned on y is then given by

p(x|y) = N
(

x µx + ΣxyΣ
−1
yy

(

y − µy

)

,Σxx − ΣxyΣ
−1
yy Σyx

)

, (1.8)

whilst the marginal distribution of x is given by p(x) = N (x µx,Σxx).

A linear transformation y = Ax of a Gaussian random variable x, with p(x) =

N (x µ,Σ), is Gaussian with p(y) = N
(

y Aµ, AΣAT
)

.

Filtering: predictor-corrector method

For continuous x, the analogue of recursion (1.3) is12

p(xt |y1:t) ∝ p(xt, yt |y1:t−1) = p(yt |xt)

∫

xt−1

p(xt |xt−1)p(xt−1|y1:t−1). (1.9)

Since Gaussians are closed under multiplication and integration, the filtered distribution is

also a Gaussian. This means that we may represent p(xt |y1:t) = N (xt ft, Ft) and the filtered

recursion translates into update formulae for the mean ft and covariance Ft. One can derive

these updates by carrying out the integration in Eq. (1.9). However, this is tedious and a

shortcut is to use the linear transformation and conditioning results above. Specifically, let

〈x|y〉 denote expectation with respect to a distribution p(x|y), and let ∆x ≡ x−〈x〉. By using

the transition and emission models

xt = Axt−1 + x̄t + ǫ
x
t , yt = Cxt + ȳt + ǫ

y
t ,

we obtain

〈xt |y1:t−1〉 = A ft−1 + x̄t, 〈yt |y1:t−1〉 = C 〈xt |y1:t−1〉 + ȳt,

12With
∫

x
we indicate the integral with respect to the variable x.
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Algorithm 1.1 LDS forward pass. Compute the filtered posteriors p(xt |y1:t) ≡ N( ft, Ft) for

a LDS with parameters θt = At,Ct,Qt,Rt, x̄t, ȳt. The log-likelihood L = log p(y1:T ) is also

returned.

{ f1, F1, p1} = LDSFORWARD(0, 0, y1; θ1)

L← log p1

for t ← 2,T do

{ ft, Ft, pt} = LDSFORWARD( ft−1, Ft−1, yt; θt)

L← L + log pt

end for

function LDSFORWARD ( f , F, y; θ)

µx ← A f + x̄

µy ← Cµx + ȳ

Σxx ← AFAT + Q

Σyy ← CΣxxC
T + R

Σyx ← CΣxx ΣT
yxΣ
−1
yy is termed the Kalman gain matrix

f ′ ← µx + Σ
T
yxΣ
−1
yy

(

y − µy

)

updated mean

F′ ← Σxx − ΣT
yxΣ
−1
yy Σyx updated covariance

p′ ← exp

(

− 1
2

(

y − µy

)T
Σ−1

yy

(

y − µy

))

/
√

det 2πΣyy likelihood contribution

return f ′, F′, p′

and
〈

∆xt∆xT
t |y1:t−1

〉

= AFt−1AT + Q,
〈

∆yt∆xT
t |y1:t−1

〉

= C
(

AFt−1AT + Q
)

,
〈

∆yt∆yT
t |y1:t−1

〉

= C
(

AFt−1AT + Q
)

CT + R.

By conditioning p(xt, yt |y1:t−1) on yt using the formula (1.8), we obtain a Gaussian

distribution with mean ft and covariance Ft given by

ft = 〈xt |y1:t−1〉 +
〈

∆xt∆yT
t |y1:t−1

〉 〈

∆yt∆yT
t |y1:t−1

〉−1
(yt − 〈yt |y1:t−1〉) ,

Ft =
〈

∆xt∆xT
t |y1:t−1

〉

−
〈

∆xt∆yT
t |y1:t−1

〉 〈

∆yt∆yT
t |y1:t−1

〉−1 〈

∆yt∆xT
t |y1:t−1

〉

.

The resulting recursion is summarised in Algorithm 1.1, generalised to time-dependent

noise means x̄t, ȳt and time-dependent transition and emission noise covariances.

Algebraically the updates generate a symmetric covariance Ft although, numerically,

symmetry can be lost. This can be corrected by either including an additional symmetrisa-

tion step, or by parameterising the covariance using a square root approach [22]. A detailed

discussion regarding the numerical stability of various representations is given in [26].

Smoothing: Rauch–Tung–Striebel/correction method

For reasons of numerical stability, the most common approach to smoothing is based on

the sequential approach, for which the continuous analogue of Eq. (1.6) is

p(xt |y1:T ) ∝
∫

xt+1

p(xt |y1:t,✘✘✘yt+1:T , xt+1)p(xt+1|y1:T ).

Due to the closure properties of Gaussians, we may assume p(xt |y1:T ) = N (xt gt,Gt) and

our task is to derive update formulae for the mean gt and covariance Gt. Rather than
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long-handed integration, as in the derivation of the filtering updates, we can make use

of some algebraic shortcuts. We note that p(xt |y1:t, xt+1) can be found by first computing

p(xt, xt+1|y1:t) using the linear transition model, and then conditioning p(xt, xt+1|y1:t) on

xt+1. Given that p(xt |y1:t) has mean ft and covariance Ft, we obtain

〈xt+1|y1:t〉 = A ft,
〈

∆xt∆xT
t+1|y1:t

〉

= FtA
T,

〈

∆xt+1∆xT
t+1|y1:t

〉

= AFtA
T + Q.

Therefore p(xt |y1:t, xt+1) has mean

〈xt〉 +
〈

∆xt∆xT
t+1

〉 〈

∆xt+1∆xT
t+1

〉−1
(xt+1 − 〈xt+1〉) (1.10)

and covariance

←−
Σ t ≡

〈

∆xt∆xT
t

〉

−
〈

∆xt∆xT
t+1

〉 〈

∆xt+1∆xT
t+1

〉−1 〈

∆xt+1∆xT
t

〉

, (1.11)

where the averages are conditioned on the observations y1:t. Equations (1.10) and (1.11) are

equivalent to a reverse-time linear system

xt =
←−
A t xt+1 +

←−mt +
←−η t,

where

←−
A t ≡

〈

∆xt∆xT
t+1

〉 〈

∆xt+1∆xT
t+1

〉−1
, ←−mt ≡ 〈xt〉 −

〈

∆xt∆xT
t+1

〉 〈

∆xt+1∆xT
t+1

〉−1
〈xt+1〉 ,

and←−η t ∼ N
(←−η t |0,

←−
Σ t

)

. The statistics of p(xt |y1:T ) then follow from the linear transformation

gt =
←−
A tgt+1 +

←−mt, Gt =
←−
A tGt+1

←−
AT

t +
←−
Σ t.

The recursion is summarised in Algorithm 1.2. The cross moment, which is often required

for learning, is easily obtained as follows:

〈

∆xt∆xT
t+1|y1:T

〉

=
←−
A tGt+1 ⇒

〈

xt x
T
t+1|y1:T

〉

=
←−
A tGt+1 + gtg

T
t+1.

1.4.8 Non-linear latent Markov models

The HMM and LDS are the two main tractable workhorses of probabilistic time series mod-

elling. However, they lie at opposite ends of the modelling spectrum: the HMM assumes

fully discrete latent variables, whilst the LDS assumes fully continuous latent variables

restricted to linear updates under Gaussian noise. In practice one often encounters more

complex scenarios: models requiring both continuous and discrete latent variables, contin-

uous non-linear transitions, hierarchical models with tied parameters, etc. For such cases

exact inference is typically computationally intractable and approximations are required.

This forms a rich area of research, and the topic of several chapters of this book. Below we

give a brief overview of some classical deterministic and stochastic approximate inference

techniques that have been used in the time series context.

1.5 Deterministic approximate inference

In many deterministic approximate inference methods, a computationally intractable distri-

bution is approximated with a tractable one by optimising an objective function. For exam-

ple, one may assume a family of tractable distributions q(x|θq), parameterised by θq, and
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Algorithm 1.2 LDS backward pass. Compute the smoothed posteriors p(xt |y1:T ). This

requires the filtered results from Algorithm 1.1.

GT ← FT , gT ← fT
for t ← T − 1, 1 do

{gt,Gt} = LDSBACKWARD(gt+1,Gt+1, ft, Ft; θt)

end for

function LDSBACKWARD (g,G, f , F; θ)

µx ← A f + x̄

Σx′x′ ← AFAT + Q

Σx′x ← AF statistics of p(xt, xt+1|y1:t)←−
Σ ← F − ΣT

x′xΣ
−1
x′x′Σx′x dynamics reversal p(xt |xt+1, y1:t)

←−
A ← ΣT

x′xΣ
−1
x′x′

←−m ← f −←−A µx

g′ ←←−A g +←−m backward propagation

G′ ←←−A G
←−
A T +

←−
Σ

return g′,G′

find the best approximation to an intractable distribution p(x) by minimising the Kullback–

Leibler (KL) divergence KL
(

q(x|θq)|p(x)
)

=
〈

log(q(x|θq)/p(x))
〉

q(x|θq)
with respect to θq.

The optimal q(x|θq) is then used to answer inference questions. In the Bayesian context,

parameter learning is also a form of inference problem which is intractable for most mod-

els of interest. Below we describe a popular procedure for approximating the parameter

posterior based on minimising a KL divergence.

1.5.1 Variational Bayes

In Bayesian procedures, one doesn’t seek a ‘single best’ parameter estimate θ, but rather a

posterior distribution over θ given by

p(θ|y1:T ) =
p(y1:T |θ)p(θ)

p(y1:T )
.

In latent variable models, the marginal likelihood p(y1:T ) is given by

p(y1:T ) =

∫

θ

∫

x1:T

p(x1:T , y1:T |θ)p(θ).

In practice, computing the integral over both θ and x1:T can be difficult. The idea in

variational Bayes (VB) (see, for example, [27]) is to seek an approximation

p(x1:T , θ|y1:T ) ≈ q(x1:T , θ|y1:T ),

where the distribution q is restricted to the form

q(x1:T , θ|y1:T ) = q(x1:T |y1:T )q(θ|y1:T ).
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The best distribution q in this class can be obtained by minimising the KL divergence13

KL(q(x1:T )q(θ)|p(x1:T , θ|y1:T )) =
〈

log q(x1:T )
〉

q(x1:T )

+
〈

log q(θ)
〉

q(θ) −
〈

log
p(y1:T |x1:T , θ)p(x1:T |θ)p(θ)

p(y1:T )

〉

q(x1:T )q(θ)

.

The non-negativity of the divergence results in a lower bound on the marginal likelihood

log p(y1:T ) ≥ − 〈

log q(x1:T )
〉

q(x1:T ) −
〈

log q(θ)
〉

q(θ)

+
〈

log p(y1:T |x1:T , θ)p(x1:T |θ)p(θ)
〉

q(x1:T )q(θ) .

In many cases of interest, this lower bound is computationally tractable. Minimising the KL

divergence with respect to q(x1:T ) and q(θ) is equivalent to maximising the lower bound,

which can be achieved by iterating the following numerical updates to convergence

1. q(x1:T )new ∝ exp
〈

log p(y1:T |x1:T , θ)p(x1:T |θ)
〉

q(θ)

2. q(θ)new ∝ p(θ) exp
〈

log p(y1:T |x1:T , θ)
〉

q(x1:T ) .

If we seek a point approximation q(θ) = δ (θ − θ∗), the above simplifies to

1. q(x1:T )new ∝ p(y1:T |x1:T , θ)p(x1:T |θ)

2. θnew = argmax
θ

{〈

log p(y1:T |x1:T , θ)
〉

q(x1:T ) + log p(θ)
}

,

giving the penalised expectation maximisation (EM) algorithm [5]. For latent Markov

models,

〈

log p(y1:T |x1:T , θ)
〉

q(x1:T ) =
∑

t

〈

log p(yt |xt, θ)
〉

q(xt)
+

∑

t

〈

log p(xt |xt−1, θ)
〉

q(xt−1,xt)

so that the EM algorithm requires smoothed single and pairwise expectations [23].

1.5.2 Assumed density filtering

For more complex latent Markov models than the ones described in the previous sections,

the filtering recursion (1.9) is in general numerically intractable. For continuous xt and

non-linear-Gaussian transition p(xt |xt−1) the integral over xt−1 may be difficult, or give rise

to a distribution that is not in the same distributional family as p(xt−1|y1:t−1). In such cases,

a useful approximation can be obtained with the assumed density filtering (ADF) method,

in which the distribution obtained from the filtering recursion is projected back to a chosen

family [1].

More specifically, assume that we are given an approximation q(xt−1|y1:t−1) to

p(xt−1|y1:t−1), where q(xt−1|y1:t−1) is a distribution chosen for its numerical tractability (a

Gaussian for example). Using the filtering recursion (1.9), we obtain an approximation for

the filtered distribution at t

q̃(xt |y1:t) ∝
∫

xt−1

p(yt |xt)p(xt |xt−1)q(xt−1|y1:t−1).

13To simplify the subsequent expressions, we omit conditioning on the observations in the approximating

distribution.



9780521196765book CUP/BRBR May 24, 2011 13:44 Page-18

18 David Barber, A. Taylan Cemgil and Silvia Chiappa

However, in general, q̃(xt |y1:t) will not be in the same family as q(xt−1|y1:t−1). To deal with

this we project q̃ to the family q using

q(xt |y1:t) = argmin
q(xt |y1:t)

KL(q̃(xt |y1:t)|q(xt |y1:t)) .

For q in the exponential family, this corresponds to matching the moments of q(xt |y1:t) to

those of q̃(xt |y1:t). Assumed density filtering is a widely employed approximation method

and also forms part of other methods, such as approximate smoothing methods. For

example, ADF is employed as part of the expectation correction method for approximate

smoothing in the switching LDS (see Chapter 8 of this book). Furthermore, many approx-

imation methods are based on ADF-style approaches. Below, we provide one example of

an ADF-style approximation method for a Poisson model.

Example In this example, we discuss a model for tracking the number of objects in

a given region based on noisy observations. Similar types of models appear in applica-

tions such as population dynamics (immigration) and multi-object tracking (see Chapters 3

and 11).

Suppose that, over time, objects of a specific type appear and disappear in a given

region. At time step t−1, there are st−1 objects in the region. At the next time step t, each of

the st−1 objects survives in the region independently of other objects with probability πsur.

We denote with s̄t the number of surviving objects. Additionally, vt new objects arrive with

rate b, independent of existing objects, so that the number of objects present in the region at

time step t becomes st = s̄t + vt. By indicating with BI and PO the Binomial and Poisson

distribution respectively, the specific survive–birth process is given by

Survive s̄t |st−1 ∼ BI(s̄t |st−1, πsur) =

(

st−1

s̄t

)

πs̄t
sur(1 − πsur)

st−1−s̄t ,

Birth st = s̄t + vt, vt ∼ PO(vt |b) =
bvt

vt!
e−b.

Due to errors, each of the st objects is detected only with probability πdet, meaning that

some objects remain possibly undetected. We denote with ŝt the number of detected objects

among the st objects. On the other hand, there is a number et of spurious objects that

are detected (with rate c), so that we actually observe yt = ŝt + et objects. The specific

detect–observe process is given by

Detect ŝt |st ∼ BI(ŝt |st, πdet),

Observe in clutter yt = ŝt + et, et ∼ PO(et |c).

The belief network representation of this model is given in Fig. 1.8.

The inferential goal is to estimate the true number of objects st from the filtered poste-

rior p(st |y1:t). Unfortunately, the filtered posterior is not a distribution in any standard form

and becomes increasingly difficult to represent as we proceed in time. To deal with this,

we make use of an ADF-style approach to obtain a Poisson approximation to the filtered

posterior at each time step.

If we assume that p(st−1|y1:t−1) is Poisson, then a natural way to compute p(st |y1:t)

would be to use

p(st |y1:t) ∝ p(yt |st)p(st |y1:t−1).
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st−1 s̄t st

ŝt

s̄t+1

yt

survive birth

detect

clutter

Figure 1.8 Belief network representation of the counting

model. The goal is to compute the filtering density p(st |y1:t).

Nodes ŝt−1, yt−1 are omitted for clarity.

The first term p(yt |st) is obtained as the sum of a Binomial and a Poisson random variable.

The second term p(st |y1:t−1) may be computed recursively from p(st−1|y1:t−1) and is Poisson

distributed (see below). Performing ADF moment matching of the non-standard p(st |y1:t)

to a Poisson distribution is however not straightforward.

A simpler alternative approach (and not generally equivalent to fitting the best Poisson

distribution to p(st |y1:t) in the minimal KL divergence sense) is to project p(ŝt |y1:t) to a

Poisson distribution using moment matching and then form

p(st |y1:t) =
∑

ŝt

p(st |ŝt, y1:t−1)p(ŝt |y1:t) =
∑

ŝt

p(st, ŝt, y1:t−1)

p(ŝt, y1:t−1)
p(ŝt |y1:t)

= p(st |y1:t−1)
∑

ŝt

p(ŝt |st)

p(ŝt |y1:t−1)
p(ŝt |y1:t), (1.12)

which, as we will see, is also Poisson distributed. Before proceeding with explaining the

recursion, we state two useful results for Poisson random variables. Let s and e be Poisson

random variables with respective intensities λ and ν. Then

superposition The sum y = s + e is Poisson distributed with intensity λ + ν.

conditioning The distribution of s conditioned on e is given by p(s|e) = BI(s|e, λ/ν).

Using these results we can derive a recursion as follows. At time t − 1 we assume

p(st−1|y1:t−1) = PO(st−1|λt−1|t−1). This gives

p(s̄t |y1:t−1) =
∑

st−1

p(s̄t |st−1)p(st−1|y1:t−1) = PO(s̄t |πsurλt−1|t−1),

where we have used the following general result derived from the conditioning property:

∑

n

BI(m|n, π)PO(n|λ) = PO(m|πλ) .

From the birth process and using the superposition property we obtain

p(st |y1:t−1) = PO(st |λt|t−1), λt|t−1 = b + πsurλt−1|t−1 .

This gives

p(ŝt |y1:t−1) =
∑

st

p(ŝt |st)p(st |y1:t−1) = PO(ŝt |πdetλt|t−1) .
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Figure 1.9 Assumed density filter-

ing for object tracking. The hori-

zontal axis denotes the time index

and the vertical axis the number

of objects. The dotted lines repre-

sent one standard deviation of the

filtered posterior.

From the observe in clutter process and using the superposition property we obtain the

predictive distribution

p(yt |y1:t−1) = PO(yt |λt|t−1πdet + c) .

The posterior distribution of the number of detected objects is therefore

p(ŝt |y1:t) = BI(ŝt |yt, λt|t−1πdet/(λt|t−1πdet + c)) .

A well-known Poisson approximation to the Binomial distribution based on moment

matching has intensity

λ∗ = argmin
λ

KL(BI(s|y, π)|PO(s|λ)) = yπ,

so that

p(ŝt |y1:t) ≈ PO(ŝt |γ), γ ≡ ytλt|t−1πdet/(λt|t−1πdet + c) .

Using Eq. (1.12) with the Poisson approximation to p(ŝt |y1:t), we obtain

p(st |y1:t) ≈ PO(st |λt|t−1)
∑

ŝt

BI(ŝt |st, πdet)

PO(ŝt |πdetλt|t−1)
PO(ŝt |γ)

∝
(λt|t−1(1 − πdet))

st

st!

∑

ŝt

(

st

ŝt

) (

γ

λt|t−1(1 − πdet)

)ŝt

︸                               ︷︷                               ︸
(

1+
γ

λt|t−1(1−πdet)

)st

,

so that
p(st |y1:t) ≈ PO(st |λt|t), λt|t = (1 − πdet)λt|t−1 + yt

πdetλt|t−1

c + πdetλt|t−1

.

Intuitively, the first term in λt|t corresponds to the undetected objects, whilst the second

term is the Poisson approximation to the Binomial posterior that results from observing the

sum of two Poisson random variables with intensities c and πdetλt|t−1. At time t = 1, we

initialise the intensity λ1|0 to the birth intensity.

In Fig. 1.9, we show the results of the filtering recursion on data generated from the

model. As we can see, the tracking performance is good even though the filter involves an

approximation.

This technique is closely related to the Poissonisation method used heavily in proba-

bilistic analysis of algorithms [20]. In Chapters 3 and 11, an extension called the probability

hypothesis density (PHD) filter to multi-object tracking is considered. Instead of tracking a

scalar intensity, an intensity function over the whole space is approximated. The PHD filter

combines ADF with approximate inference methods such as sequential Monte Carlo (see

Section 1.6).



9780521196765book CUP/BRBR May 24, 2011 13:44 Page-21

Probabilistic time series models 21

1.5.3 Expectation propagation

In this section, we review another powerful deterministic approximation technique called

expectation propagation (EP) [19]. We present here EP in the context of approximating the

posterior p(xt |y1:T ) of a continuous latent Markov model p(x1:T , y1:T ), see also Chapter 7.

According to Eqs. (1.4) and (1.7), the exact single and pairwise marginals have the form

p(xt |y1:T ) ∝ α (xt) β (xt) ,

p(xt, xt+1|y1:T ) ∝ α(xt)p(yt+1|xt+1)p(xt+1|, xt)β(xt+1).

Starting from these equations, we can retrieve the recursions (1.3)–(1.5) for α and β by

requiring that the single marginal is consistent with the pairwise marginal, that is

p(xt+1|y1:T ) =

∫

xt

p(xt, xt+1|y1:T ),

α (xt+1) β (xt+1) ∝
∫

xt

α(xt)p(yt+1|xt+1)p(xt+1|, xt)β(xt+1).

Cancelling β(xt+1) from both sides we immediately retrieve the standard α recursion. One

may derive the β recursion similarly by integrating the pairwise marginal over xt+1. For

complex situations, the resulting α(xt+1) is not in the same family as α(xt), giving rise

to representational difficulties. As in ADF, we therefore project α(xt+1) back to a chosen

family. Whilst this is reasonably well defined, since α(xt+1) represents a filtered distribution,

it is unclear how to project β(xt) to a chosen family since β(xt) is not a distribution in xt. In

EP, this problem is resolved by first defining

q̃(xt+1) ∝
∫

xt

α(xt)p(yt+1|xt+1)p(xt+1|, xt)β(xt+1),

and then iterating the following updates to convergence

α(xt+1) = argmin
α(xt+1)

KL

(

q̃(xt+1)| 1

Zt+1

α(xt+1)β(xt+1)

)

,

β(xt) = argmin
β(xt)

KL

(

q̃(xt)|
1

Zt

α(xt)β(xt)

)

,

where Zt and Zt+1 are normalisation constants. In exponential family approximations, these

updates correspond to matching the moments of q̃ to the moments of α(x)β(x).

1.6 Monte Carlo inference

Many inference problems such as filtering and smoothing can be considered as comput-

ing expectations with respect to a (posterior) distribution. A general numerical method for

approximating the expectation Eπ

[

ϕ(x)
]

=
∫

x
ϕ(x)π(x) of a function ϕ of a random vari-

able x is given by sampling. Consider a procedure that draws samples from a multivariate

distribution π̂(x1, . . . , xN). For X =
{

x1, . . . , xN
}

, the random variable

ĒX,N ≡
ϕ(x1) + · · · + ϕ(xN)

N
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ǫ = 0.25: Chain that converges
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tribution more quickly than for

ǫ = 0.1.

Figure 1.10 Convergence to the stationary distribution. For ǫ = 0, the state transition diagram would be

disconnected, hence the chain fails to be irreducible and therefore to converge.

has expectation

Eπ̂

[

ĒX,N
]

=
1

N

∑

n

Eπ̂

[

φ(xn)
]

.

If the marginal distribution of each xn is equal to the target distribution

π̂(xn) = π(xn), n = 1, . . . ,N

then

Eπ̂

[

ĒX,N
]

= Eπ

[

ϕ(x)
]

,

that is ĒX,N is an unbiased estimator of Eπ

[

ϕ(x)
]

. If, in addition, the samples are

independent

π̂(x1, . . . , xN) =

N∏

n=1

π̂(xn),

and Eπ

[

ϕ(x)
]

and Vπ[ϕ(x)] are finite, the central limit theorem guarantees that, for

sufficiently large N, ĒX,N is Gaussian distributed with mean and covariance

Eπ

[

ϕ(x)
]

,
Vπ[ϕ(x)]

N
.

That is the variance of the estimator drops with increasing N. These results have important

practical consequences: If we have a procedure that draws iid samples x1, . . . , xN from π,

then the sample average ĒX,N converges rapidly to the exact expectation Eπ

[

ϕ(x)
]

as N

increases and provides a ‘noisy’ but unbiased estimator for any finite N. For large N the

error behaves as N−1/2 and is independent of the dimensionality of x. The key difficulty,

however, is in generating independent samples from the target distribution π. Below we

discuss various Monte Carlo methods that strive to provide unbiased samples and vary in

the degree to which they generate independent samples.
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1.6.1 Markov chain Monte Carlo

In Markov chain Monte Carlo (MCMC) methods, samples from a desired complex dis-

tribution π(x) are approximated with samples from a simpler distribution defined by a

specially constructed time-homogeneous Markov chain. Given an initial state x1, a set of

samples x2, . . . , xN from the chain are obtained by iteratively drawing from the transition

distribution (‘kernel’) K(xn|xn−1).14 The distribution πn(xn) satisfies

πn(xn) =

∫

xn−1

K(xn|xn−1)πn−1(xn−1),

which we compactly write as πn = Kπn−1. The theory of Markov chains characterises the

convergence of the sequence π1, π2, . . . If the sequence converges to a distribution π, then

π (called the stationary distribution) satisfies π = Kπ. For an ergodic chain, namely irre-

ducible and aperiodic,15 there exists a unique stationary distribution to which the sequence

converges, irrespective of the initial state x1. To illustrate the idea, consider the Markov

chain of Section 1.3.1 in which the robot moves freely under the transition model defined

in Eq. (1.1), repeated here for convenience

K = ǫ





1 0 0

0 1 0

0 0 1




+ (1 − ǫ)





0 0 1

1 0 0

0 1 0




.

The robot starts at cell 3, i.e., π1 = (π11, π12, π13) = (0, 0, 1)⊤. In Fig. 1.10, we plot the cell

probabilities of πn = Kn−1π1 as n increases for various choices of ǫ. Provided 0 < ǫ ≤ 1,

all chains converge to the uniform distribution π = (1/3, 1/3, 1/3), however, with differing

convergence rates.

This discussion suggests that, if we can design a transition kernel K such that the asso-

ciated Markov chain is ergodic and has the target distribution π as its stationary distribution,

at least in principle we can generate samples from the Markov chain that eventually will

tend to be from π. After ignoring the initial ‘burn in’ part of the generated path as the

sequence moves to the stationary distribution, the subsequent part can be used to estimate

expectations under π. Notice, however, that the samples generated will typically be depen-

dent and therefore the variance of the estimate may not scale inversely with the number of

samples from the chain.

Metropolis–Hastings

Designing a transition kernel K for a given target π is straightforward via the approach

proposed by Metropolis [18] and later generalised by Hastings [12]. Suppose that we are

given a target density π = φ/Z, where Z is a (possibly unknown) normalisation constant.

The Metropolis–Hastings (MH) algorithm uses a proposal density q(x|x′) for generating a

candidate sample x, which is accepted with probability 0 ≤ α(x|x′) ≤ 1 defined as

α(x|x′) = min

{

1,
q(x′|x)π(x)

q(x|x′)π(x′)

}

,

14Note that the sample index is conceptually different from the time index in a time series model; here n is the

iteration number of the sampling algorithm.
15For finite state Markov chains, irreducibility means that each state can be visited starting from any other,

while aperiodicity means that each state can be visited at any iteration n larger than some fixed number.
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Algorithm 1.3 Metropolis–Hastings

1: Initialise x1 arbitrarily.

2: for n = 2, 3 . . . do

3: Propose a candidate: xcand ∼ q(xcand|xn−1).

4: Compute acceptance probability:

α(xcand|xn−1) = min

{

1,
q(xn−1|xcand)π(xcand)

q(xcand|xn−1)π(xn−1)

}

.

5: Sample from uniform distribution: u ∼ U(u|[0, 1]).

6: if u < α then

7: Accept candidate: xn ← xcand.

8: else

9: Reject candidate: xn ← xn−1.

10: end if

11: end for

and rejected with probability 0 ≤ ρ(x′) ≤ 1 defined as

ρ(x′) =

∫

(1 − α(x|x′))q(x|x′)dx.

The MH transition kernel K has the following form

K(x|x′) = q(x|x′)α(x|x′) + δ(x − x′)ρ(x′).

This kernel satisfies the detailed balance property

K(x|x′)π(x′) = (q(x|x′)α(x|x′) + δ(x − x′)ρ(x′))π(x′)

= q(x|x′) min{1, q(x′|x)π(x)

q(x|x′)π(x′)
}π(x′) + δ(x − x′)ρ(x′)π(x′)

= min{q(x|x′)π(x′), q(x′|x)π(x)} + δ(x − x′)ρ(x′)π(x′)

= q(x′|x) min{q(x|x′)π(x′)

q(x′|x)π(x)
, 1}π(x) + δ(x′ − x)ρ(x)π(x)

= K(x′|x)π(x).

By integrating both sides over x′, we obtain

π(x) =

∫

K(x|x′)π(x′)dx′,

and therefore π is a stationary distribution of K. Note that to compute the acceptance prob-

ability α we only need to evaluate φ, since the normalisation constant Z cancels out. For a

given target π and proposal q(x′|x) we now have a procedure for sampling from a Markov

chain with stationary distribution π. The procedure is detailed in Algorithm 1.3.

Gibbs sampling

The Gibbs sampler [10, 17] is a MCMC method which is suitable for sampling a multivari-

ate random variable x = (x1, . . . , xD) with joint distribution p(x). Gibbs sampling proceeds

by partitioning the set of variables x into a chosen variable xi and the rest x = (xi, x−i). The
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Algorithm 1.4 Gibbs sampler

1: Initialise x1 = (x1
1
, . . . , x1

D
) arbitrarily.

2: for n = 2, 3 . . . do

3: xn
1
∼ p(xn

1
|xn−1

2
, xn−1

3
, . . . , xn−1

D
).

4: xn
2
∼ p(xn

2
|xn

1
, xn−1

3
, . . . , xn−1

D
).

...

5: xn
D
∼ p(xn

D
|xn

1
, xn

2
, . . . , xn

D−1
).

6: end for
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Figure 1.11 A typical realisation from the changepoint model. The time index is indicated by t and the number

of counts by yt . The true intensities are shown with a dotted line: at time step τ = 26, the intensity drops from

λ1 = 3.2 to λ2 = 1.2.

assumption is that the conditional distributions p(xi|x−i) are tractable. One then proceeds

coordinate-wise by sampling from the conditionals as in Algorithm 1.4.

Gibbs sampling can be viewed as MH sampling with the proposal

q(x|x′) = p(xi|x′−i)δ
(

x−i − x′−i

)

.

Using this proposal results in a MH acceptance probability of 1, so that every candidate

sample is accepted. Dealing with evidence (variables in known states) is straightforward –

one sets the evidential variables into their states and samples from the remaining variables.

Example: Gibbs sampling for a changepoint model

We illustrate the Gibbs sampler on a changepoint model for count data [13]. In this model,

at each time t we observe the count of an event yt. All the counts up to an unknown time τ

are iid realisations from a Poisson distribution with intensity λ1. From time τ + 1 to T , the

counts come from a Poisson distribution with intensity λ2. We assume that the changepoint

τ is uniformly distributed over 1, . . . ,T and that the intensities λ1, λ2 are Gamma distributed

G(λi|a, b) =
1

Γ(a)
baλa−1

i e−bλi , i = 1, 2 .

This leads to the following generative model

τ ∼ U(τ|1, . . . ,T ), λi ∼ G(λi|a, b), i = 1, 2,

yt ∼
{

PO(yt |λ1) 1 ≤ t ≤ τ,
PO(yt |λ2) τ < t ≤ T.

A typical draw from this model is shown in Fig. 1.11. The inferential goal is to compute

the posterior distribution p(λ1, λ2, τ|y1:T ) of the intensities and changepoint given the count
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Algorithm 1.5 A Gibbs sampler for the changepoint model

1: Initialise λ1
2
, τ1.

2: for n = 2, 3 . . . do

3: λn
1
∼ p(λn

1
|τn−1, y1:T ) = G(a +

∑τn−1

t=1 yt, τ
n−1 + b).

4: λn
2
∼ p(λn

2
|τn−1, y1:T ) = G(a +

∑T
t=τn−1+1

yt,T − τn−1 + b).

5: τn ∼ p(τn|λn
1
, λn

2
, y1:T ).

6: end for

data. In this problem this posterior is actually tractable and serves to assess the quality of

the Gibbs sampling approximation.

To implement Gibbs sampling we need to compute the distribution of each variable,

conditioned on the rest. These conditionals can be conveniently derived by writing the log

of the joint distribution of all variables and collecting terms that depend only on the free

variable. The log of the joint distribution is given by

log p(y1:T , λ1, λ2, τ) = log



p(λ1)p(λ2)p(τ)

τ∏

t=1

p(yt |λ1)

T∏

t=τ+1

p(yt |λ2)



 .

This gives

log p(λ1|τ,��λ2, y1:T ) =



a +

τ∑

t=1

yt − 1



 log λ1 − (τ + b)λ1 + const.,

log p(τ|λ1, λ2, y1:T ) =

τ∑

t=1

yt log λ1 +

T∑

t=τ+1

yt log λ2 + τ (λ2 − λ1) + const.,

and similarly for log p(λ1|τ, y1:T ), so that both p(λ1|τ, y1:T ) and p(λ2|τ, y1:T ) are Gamma

distributions. Sampling from these conditional distributions is straightforward, see

Algorithm 1.5. Samples from the obtained posterior distribution are plotted in Fig. 1.12.

For this particularly simple problem, Gibbs sampling works well, with the estimated sample

marginal estimates of λ and τ close to the values we expect based on the known parameters

used to generate the data.

1.6.2 Sequential Monte Carlo

The MCMC techniques described above are batch algorithms that require the availability of

all data records. These techniques are therefore unsuitable when the data needs to be pro-

cessed sequentially and can be prohibitive for long time series. In such cases, it is desirable

to use alternative methods which process the data sequentially and take a constant time per

observation. In this context, sequential Monte Carlo (SMC) techniques [6, 8] have proved

useful in many applications. These methods are based on importance sampling/resampling

which we review below.

Importance sampling

Suppose that we are interested in computing the expectation Ep

[

ϕ(x)
]

with respect to a dis-

tribution p(x) = φ(x)/Z, where the non-negative function φ(x) is known but the overall

normalisation constant Z is assumed to be computationally intractable. In importance

sampling (IS), instead of sampling from the target distribution p(x), we sample from a
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Figure 1.12 Gibbs samples from the posterior of the changepoint model vs. sample iteration. True values are

shown with a horizontal line. (top) Intensities λ1 and λ2. (bottom) Changepoint index τ.

tractable distribution q(x) and reweight the obtained samples to form an unbiased estimator

of Ep

[

ϕ(x)
]

. IS is based on the realisation that we can write the expectation with respect to

p as a ratio of expectations with respect to q, that is

Ep

[

ϕ(x)
]

=
1

Z

∫

ϕ(x)
φ(x)

q(x)
q(x) =

Eq

[

ϕ(x)W(x)
]

Z
=

Eq

[

ϕ(x)W(x)
]

Eq [W(x)]
,

where W(x) ≡ φ(x)/q(x) is called the weight function. Thus Ep

[

ϕ(x)
]

can be approximated

using samples x1, . . . , xN from q as
∑N

i=1 W iϕ(xi)/N
∑N

i=1 W i/N
,

where W i ≡ W(xi). The samples x1, . . . , xN are also known as ‘particles’. Using normalised

weights wi ≡ W i/
∑N

i′=1 W i′ , we can write the approximation as

N∑

i=1

wiϕ(xi).

An example for a bimodal distribution p(x) and unimodal distribution q(x) is given in

Fig. 1.13, showing how the weights compensate for the mismatch between q and p.

1.6.3 Resampling

Unless the IS distribution q(x) is close to the target distribution p(x), the normalised weights

will typically have significant mass in only a single component. This issue can be partially

addressed using resampling. Given a weighted particle system
∑N

i=1 wiδ(x− xi), resampling

is the term for a set of methods for generating randomly a reweighted particle system of the

form 1
M

∑N
i=1 niδ(x − xi). Specifically, a resampling algorithm returns an occupancy vector

n1, . . . , nN which satisfies ni ∈ {0, 1, 2, . . . ,M},
∑

i ni = M. For the resampling algorithm to

produce an unbiased estimator of the original system
∑N

i=1 wiδ(x − xi) we require

E
[ 1

M

N∑

i=1

niδ(x − xi)
]

=

N∑

i=1

1

M
E[ni]δ(x − xi) .
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Figure 1.13 Importance sampling. (a) The solid curve denotes the unnormalised target distribution φ(x) and the

dashed curve the tractable IS distribution q(x). Samples from q(x) are assumed straightforward to generate and are

plotted on the axis. (b) To account for the fact that the samples are from q and not from the target p, we need to

reweight the samples. The IS distribution q generates too many samples where p has low mass, and too few where

p has high mass. The samples in these regions are reweighted accordingly. (c) Binning the weighted samples from

q, we obtain an approximation to p such that averages with respect to this approximation will be close to averages

with respect to p.

Hence, provided E[ni] = Mwi, expectations carried out using the resampled particles will

be unbiased. It is typical (though not necessary) to set M = N. Intuitively, resampling is

a randomised pruning algorithm in which we discard particles with low weight. Unlike

a deterministic pruning algorithm, the random but unbiased nature of resampling ensures

an asymptotically consistent algorithm. For a discussion and comparison of resampling

schemes in the context of SMC see [3, 8].

1.6.4 Sequential importance sampling

We now apply IS to the latent Markov models of Section 1.3. The resulting sequential IS

methods are also known as particle filters. The goal is to estimate the posterior

p(x1:t |y1:t) = p(y1:t |x1:t)p(x1:t)
︸              ︷︷              ︸

φ(x1:t)

/ p(y1:t)
︸︷︷︸

Zt

,

where we assume that the normalisation term Zt is intractable. At each time t, we have

an importance distribution qt(x1:t), from which we draw samples xi
1:t

with corresponding

importance weights

W i
t = φ(xi

1:t)/qt(xi
1:t).

Without loss of generality, we can construct q sequentially

qt(x1:t) = qt(xt |x1:t−1)qt(x1:t−1).

In particle filtering, one chooses a distribution q that only updates the current xt and leaves

previous samples unaffected. This is achieved using

qt(x1:t) = qt(xt |x1:t−1)qt−1(x1:t−1) .
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The weight function Wt(x1:t) then admits a recursive formulation

Wt(x1:t) =
φ(x1:t)

qt(x1:t)
=

p(yt |xt)p(xt |xt−1)
∏t−1

τ=1 p(yτ|xτ)p(xτ|xτ−1)

qt(xt |x1:t−1)
∏t−1

τ=1 qτ(xτ|x1:τ−1)

=
p(yt |xt)p(xt |xt−1)

qt(xt |x1:t−1)
︸               ︷︷               ︸

vt

Wt−1(x1:t−1) ,

where vt is called the incremental weight. Particle filtering algorithms differ in their choices

for qt(xt |x1:t−1). The optimal choice (in terms of reducing the variance of the weights) is the

one step filtering distribution [7]

qt(xt |x1:t−1) = p(xt |xt−1, yt).

However, sampling from this distribution is difficult in practice, and simpler distributions

are therefore employed. The bootstrap filter uses the transition

qt(xt |x1:t−1) = p(xt |xt−1),

for which the incremental weight becomes vt = p(yt |xt). In this case, the IS distribution does

not make any use of the recent observation and therefore has the tendency to lose track of

the high probability regions of the posterior. Indeed, it can be shown that the variance of

the importance weights for the bootstrap filter increases in an unbounded fashion [7, 17] so

that, after a few time steps, the particle set typically loses track of the exact posterior mode.

A crucial extra step to make the algorithm work is resampling, which prunes branches with

low weights and keeps the particle set located in high probability regions. It can be shown

that, although the particles become dependent due to resampling, the estimations are still

consistent and converge to the true values as the number of particles increases to infinity.

A generic particle filter is given in Algorithm 1.6 and in Fig. 1.14 we illustrate the

dynamics of the algorithm in a tracking scenario. At time step t − 1 each ‘parent’ particle

generates offspring candidates xt from the IS distribution. The complete set of offspring is

then weighted and resampled to generate a set of particles at time t. In the figure parent

particles are linked to their surviving offspring.

1.7 Discussion and summary

Probabilistic time series models enable us to reason in a consistent way about tempo-

ral events under uncertainty. The probabilistic framework is particularly appealing for its

conceptual clarity, and the use of a graphical model representation simplifies the devel-

opment of the models and associated inference algorithms. The Markov independence

assumption, which states that only a limited memory of the past is needed for understand-

ing the present, plays an important role in time series models. This assumption reduces the

burden in model specification and simplifies the computation of quantities of interest.

We reviewed several classical probabilistic Markovian models such AR models, hidden

Markov models and linear dynamical systems, for which inference is tractable. We then

discussed some of the main approximate approaches for the case of intractable inference,

namely deterministic methods such as variational techniques and assumed density filtering

and stochastic methods such as Monte Carlo sampling.

Many real-world time series problems are highly specialised and require novel mod-

els. The probabilistic approach, coupled with a graphical representation, facilitates the
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Algorithm 1.6 Particle filter

for i = 1, . . . ,N do

Compute the IS distribution: qt(xt |xi
1:t−1

).

Generate offsprings: x̂i
t ∼ qt(xt |xi

1:t−1
).

Evaluate importance weights

vi
t =

p(yt |x̂i
t)p(x̂i

t |xi
t−1

)

qt(x̂i
t |xi

1:t−1
)

, W i
t = vi

tW
i
t−1.

end for

if Not Resample then

Extend particles: xi
1:t
= (xi

1:t−1
, x̂i

t), i = 1, . . . ,N.

else

Normalise importance weights: Z̃t ←
∑

j W
j

t , w̃t ← (W1
t , . . . ,W

N
t )/Z̃t.

Generate associations: (a(1), . . . , a(N))← Resample(w̃t).

Discard or keep particles and reset weights

xi
0:t ← (x

a(i)

0:t−1
, x̂

a(i)
t ), W i

t ← Z̃t/N, i = 1, . . . ,N.

end if
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Figure 1.14 Illustration of the dynamics of a particle filter with N = 4 particles. The underlying latent Markov

model corresponds to an object moving with positive velocity on the real line. The vertical axis corresponds to the

latent log-velocities x and the horizontal axis to the observed noisy positions y: the underlying velocities of the

process are shown as ‘*’, while the observed positions are shown by dotted vertical lines. The nodes of the tree

correspond to the particle positions and the sizes are proportional to normalised weights w̃(i).

development of tailored models and helps to reason about the computational complexity

of their implementation. The field is currently very active, with many novel developments

in modelling and inference, several of which are discussed in the remainder of this book.
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