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Abstract

Markov switching models (MSMs) are probabilistic models that em-
ploy multiple sets of parameters to describe different dynamic regimes
that a time series may exhibit at different periods of time. The
switching mechanism between regimes is controlled by unobserved ran-
dom variables that form a first-order Markov chain. Explicit-duration
MSMs contain additional variables that explicitly model the distribu-
tion of time spent in each regime. This allows to define duration distri-
butions of any form, but also to impose complex dependence between
the observations and to reset the dynamics to initial conditions. Models
that focus on the first two properties are most commonly known as hid-
den semi-Markov models or segment models, whilst models that focus
on the third property are most commonly known as changepoint models
or reset models. In this monograph, we provide a description of explicit-
duration modelling by categorizing the different approaches into three
groups, which differ in encoding in the explicit-duration variables differ-
ent information about regime change/reset boundaries. The approaches
are described using the formalism of graphical models, which allows to
graphically represent and assess statistical dependence and therefore
to easily describe the structure of complex models and derive infer-
ence routines. The presentation is intended to be pedagogical, focusing
on providing a characterization of the three groups in terms of model
structure constraints and inference properties. The monograph is sup-
plemented with a software package that contains most of the models
and examples described1. The material presented should be useful to
both researchers wishing to learn about these models and researchers
wishing to develop them further.

S. Chiappa. Explicit-Duration Markov Switching Models. Foundations and
TrendsR© in Machine Learning, vol. 7, no. 6, pp. 803–886, 2014.
DOI: 10.1561/2200000054.

1More information about the package is available at www.nowpublishers.com.



1
Introduction

Markov switching models (MSMs) are probabilistic models that employ
multiple sets of parameters to describe different dynamic regimes that
a time series may exhibit at different periods of time. The switching
mechanism between regimes is controlled by unobserved variables that
form a first-order Markov chain.

MSMs are commonly used for segmenting time series or to retrieve
the hidden dynamics underlying noisy observations.

Consider, for example, the time series displayed in Figure 1.1(a),
which corresponds to the measured leg positions of an individual per-
forming repetitions of the actions low/high jumping and hopping on
the left/right foot. A segmentation of the time series into the underly-
ing actions could be obtained with a MSM in which each action forms a
separate regime, e.g. by computing the regimes with highest posterior
probabilities1.

As another example, consider the time series displayed with dots in
Figure 1.1(b), which corresponds to noisy observations of the positions
of a two-wheeled robot moving in the two-dimensional space according
to straight movements, left-wheel rotations and right-wheel rotations

1This example is discussed in detail in §3.5.3.

2



3

Low Jump High Jump Hop Left Foot Hop Right Foot

(a) (b)

Figure 1.1: (a): Body-marker recording of an individual performing repetitions
of the actions low jumping up and down, high jumping up and down, hopping on
the left foot and hopping on the right foot (CMU Graphics Lab Motion Capture
Database). (b): Actual positions (continuous line) and measured positions (dots) of a
two-wheeled robot moving in the two-dimensional space. The initial actual position
is indicated with a star.

(the actual positions are displayed with a continuous line). Denoised
estimates of the positions could be obtained with a MSM in which the
robot movements are described with continuous unobserved variables
and in which each type of movement forms a separate regime, e.g. by
computing the posterior means of the continuous variables2.

In standard MSMs, the regime variables implicitly define a geomet-
ric distribution on the time spent in each regime. In explicit-duration
MSMs, this constraint is relaxed by using additional unobserved vari-
ables that allow to define duration distributions of any form. Explicit-
duration variables also allow to impose complex dependence between
the observations and to reset the dynamics to initial conditions.

Explicit-duration MSMs were first introduced in the speech com-
munity [Ferguson, 1980] and are mostly used to achieve more powerful
modelling than standard MSMs through the specification of more accu-
rate duration distributions and dependencies between the observations.
In this case, the models are most commonly known with the names of

2This example is discussed in detail in §3.5 and in Appendix A.4.
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hidden semi-Markov models or segment models. However, the possibil-
ity to reset the dynamics to initial conditions has recently led to the use
of explicit-duration variables also for Bayesian approaches to abrupt-
change detection, for identifying repetitions of patterns (such as, e.g.,
the action repetitions underlying the time series in Figure 1.1(a)), and
for performing/approximating inference3 [Fearnhead, 2006, Fearnhead
and Vasileiou, 2009, Chiappa and Peters, 2010, Bracegirdle and Bar-
ber, 2011]. In these cases, the models are most commonly known with
the names of changepoint models or reset models.

Explicit-duration MSMs have been used in many application areas
including speech analysis [Russell and Moore, 1985, Levinson, 1986,
Rabiner, 1989, Gu et al., 1991, Gales and Young, 1993, Russell, 1993,
Ostendorf et al., 1996, Moore and Savic, 2004, Liang et al., 2011], hand-
writing recognition [Chen et al., 1995], activity recognition [Yu and
Kobayashi, 2003b, Huang et al., 2006, Oh et al., 2008, Chiappa and Pe-
ters, 2010], musical pattern recognition [Pikrakis et al., 2006], financial
time series analysis [Bulla and Bulla, 2006], rainfall time series analysis
[Sansom and Thomson, 2001], protein structure segmentation [Schmi-
dler et al., 2000], gene finding [Winters-Hilt et al., 2010], DNA analysis
[Barbu and Limnios, 2008, Fearnhead and Vasileiou, 2009], plant anal-
ysis [Guédon et al., 2001], MRI sequence analysis [Faisan et al., 2002],
ECG segmentation [Hughes et al., 2004], and waveform modelling [Kim
and Smyth, 2006]; see references in Yu [2010] for more examples.

Explicit-duration MSMs originated from the idea of explicitly mod-
elling the duration distribution by defining a semi-Markov process on
the regime variables, namely a process in which the trajectories are
piecewise constant functions – with interval durations drawn from an
explicitly defined duration distribution – and in which the variables
at jump times form a Markov chain. The first and currently standard
approach achieves that with variables indicating the interval duration,
and derives inference recursions using only jump times [Rabiner, 1989,
Gales and Young, 1993, Ostendorf et al., 1996, Yu, 2010]. To simplify
the derivations of posterior distributions at times that are different

3By inference we mean the computation of posterior distributions, namely dis-
tributions of unobserved variables conditioned on the observations.
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from jump times, Chiappa and Peters [2010] use count variables in
addition to duration variables, such that the combined regime and
count-duration variables form a first-order Markov chain. Other meth-
ods that explicitly model the duration distribution have been proposed
with different goals and in different communities. These methods can
all be viewed as different ways to define a first-order Markov chain
on the combined regime and explicit-duration variables that induces a
semi-Markov process on the regime variables.

In this monograph we provide a description of explicit-duration
modelling that aims at elucidating the characteristics of the different
approaches and at clarifying and unifying the literature. We identify
three fundamentally different ways to define the first-order Markov
chain on the combined regime and explicit-duration variables, which
differ in encoding in the explicit-duration variables the location of (i)
the preceding, (ii) the following, or (iii) both the preceding and follow-
ing regime change or reset. We discuss each encoding in the context of
MSMs of simple unobserved structure and of MSMs that contain extra
unobserved variables related by first-order Markovian dependence. The
models are described using the formalism of graphical models, which
allows to graphically represent and assess statistical dependence, and
therefore to easily describe the structure of complex models and derive
inference routines.

The remainder of the manuscript is organized as follows. Chapter
2 contains some background material. We start with a general descrip-
tion of MSMs and by showing that the regime variables implicitly de-
fine a geometric duration distribution. In §2.1 we introduce the hidden
Markov model, which represents the simplest MSM, and explain how
to obtain a negative binomial duration distribution with regime copies.
In §2.2 we introduce the framework of graphical models, and explain
how to graphically assess statistical independence in a particular type
of graphical models, called belief networks, that will be used for de-
scribing the models. In §2.2.1 we illustrate how belief networks can
be used to easily derive the standard inference recursions of MSMs.
In §2.3 we give a general explanation of the expectation maximization
algorithm, which represents the most popular algorithm for parameter
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learning in probabilistic models with unobserved variables. In Chapter
3 we describe the different approaches to explicit-duration modelling by
categorizing them into three groups. The groups are introduced in §3.1,
§3.2 and §3.3. In §3.4 we discuss in detail explicit-duration modelling
in MSMs containing only regime variables, explicit-duration variables,
and observations. In §3.5 we discuss in detail explicit-duration mod-
elling in a popular MSM containing additional unobserved variables
related by first-order Markovian dependence, namely the switching lin-
ear Gaussian state-space model, and discuss how the findings general-
ize to similar models with unobserved variables related by first-order
Markovian dependence. The case of more complex unobserved struc-
ture is not considered. In §3.6 we describe approximation schemes to
reduce the computational cost of inference. In Chapter 4 we summarize
the most important points of our exposition and make some historical
remarks.



2
Background

Markov switching models (MSMs) describe a time series v1, . . . , vT =
v1:T using S different sets of parameters, each defining a different dy-
namic regime. This is achieved by using unobserved variables s1:T ,
where st ∈ {1, . . . , S}1 indicates which of the S regimes underlies obser-
vations vt. The regime variables form a first-order, time-homogeneous,
Markov chain, i.e. the joint distribution p(s1:T )2 can be written as

p(s1:T ) = p(s1)
T∏
t=2

p(st|st−1) = π̃s1

T∏
t=2

πstst−1 ,

where π̃ is a vector of elements π̃s1 = p(s1) and π is a time-independent
transition matrix of elements πstst−1 = p(st|st−1).

In standard MSMs, the regime variables implicitly define a geo-
metric distribution on the time spent in each regime. Indeed, given
e.g. st = i, the probability of remaining in regime i at time-steps

1For simplicity of exposition, we use the same symbol to indicate a random
variable and its values.

2We use the notation p(·) and p(·|·) to indicate the probability density function
and conditional probability density function with respect to a measure or prod-
uct measures involving the Lebesgue and/or the counting measures. We use term
distribution to indicate the probability density function.

7
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t + 1, . . . , t + d − 1 and switching to a different regime at time-step
t+ d is

p(st+1:t+d−1 = i, st+d 6= i|st= i) = πd−1
ii

∑
j 6=i

πji = πd−1
ii (1−πii),

which corresponds to the geometric distribution with parameter πii.
The geometric distribution with πii ∈ {0.1, 0.5, 0.9} is shown in Figure
2.1(a).

The remainder of the chapter is organized as follows. In §2.1 we
describe the simplest MSM, namely the hidden Markov model, and
show that a negative binomial duration distribution can be obtained
with regime copies. In §2.2 we introduce the formalism of graphical
models and show how this formalism can be used to derive the standard
inference recursions of MSMs – a similar approach will be employed to
derive inference recursions in the explicit-duration extensions. In §2.3
we describe the expectation maximization algorithm, which will be used
for parameter learning throughout the manuscript.

2.1 Hidden Markov Model

The hidden Markov model (HMM) [Rabiner, 1989] is defined by a joint
distribution p(s1:T , v1:T ) that factorizes as

p(s1:T , v1:T ) = p(v1|s1)p(s1)
T∏
t=2

p(vt|st)p(st|st−1), (2.1)

where the emission distribution p(vt|st) is time-homogeneous and, for
continuous vt, commonly modelled as a Gaussian mixture. As discussed
above, s1:T implicitly define a geometric duration distribution. A more
flexible negative binomial duration distribution can be obtained by im-
posing a minimum duration dmin on the time spent in a regime [Durbin
et al., 1998]. This can be achieved, e.g., by replacing the original regimes
with S ordered sets of regimes Ri = {(i − 1)dmin + 1, . . . , idmin},
i = 1, . . . , S, where the elements of Ri have the same emission dis-
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Figure 2.1: (a): Geometric duration distribution implicitly defined in a standard
MSM with πii ∈ {0.1, 0.5, 0.9}. (b): Negative binomial duration distribution ob-
tained by replacing regime i in the standard MSM in (a) with dmin = 5 copies.

tribution as original regime i and transition distribution

p(st+1|st∈Ri\idmin) =

πii if st+1 =st

1−πii if st+1 =st+1,

p(st+1|st= idmin) =

πii if st+1 =st

πji if st+1 =(j − 1)dmin + 1, j 6= i.

Given st = i, any sequence st+1, . . . , st+d−1 in Ri such that st+d /∈
Ri has probability πd−1−(dmin−1)

ii (1 − πii)dmin−1(1 − πii), and there are( d−1
dmin−1

)
such sequences. Therefore

p(st+1:t+d−1∈Ri, st+d /∈Ri|st= i) =
(

d−1
dmin−1

)
πd−dmin
ii (1−πii)dmin ,

which corresponds to the negative binomial distribution with param-
eters πii and dmin. The negative binomial distribution with πii ∈
{0.1, 0.5, 0.9} and dmin = 5 is shown in Figure 2.1(b).
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Figure 2.2: (a): Directed acyclic graph. The node x3 is a collider on the path
x2, x3, x1 and a non-collider on the path x2, x3, x4. (b): Cyclic graph obtained from
(a) by adding a link from x4 to x1. (c): Belief network representation of the HMM.
Rectangular nodes indicate discrete variables, whilst oval nodes indicate discrete or
continuous variables. Filled nodes indicate observed variables. This convention is
used throughout the manuscript.

2.2 Graphical Models and Belief Networks

Graphical models [Pearl, 1988, Bishop, 2006, Koller and Friedman,
2009, Barber, 2012, Murphy, 2012] are a marriage between graph and
probability theory that allows to graphically represent and assess statis-
tical dependence, and therefore to easily describe the structure of com-
plex models and derive inference routines. MSMs are most commonly
described using a type of graphical models called belief networks. In
the following sections, we give some basic definitions and explain two
equivalent methods for graphically assessing statistical independence
in belief networks.

Basic definitions

A graph is a collection of nodes and links connecting pairs of nodes.
The links may be directed or undirected, giving rise to directed or
undirected graphs respectively.

A path from node xi to node xj is a sequence of linked nodes starting
at xi and ending at xj . A directed path is a path whose links are
directed and pointing from preceding towards following nodes in the
sequence.

A directed acyclic graph is a directed graph with no directed paths
starting and ending at the same node. For example, the directed graph
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in Figure 2.2(a) is acyclic. The addition of a link from x4 to x1 gives
rise to a cyclic graph (Figure 2.2(b)).

A node xi with a directed link to xj is called parent of xj . In this case,
xj is called child of xi.

A node is a collider on a specified path if it has two parents on that
path. Notice that a node can be a collider on a path and a non-collider
on another path. For example, in Figure 2.2(a) x3 is a collider on the
path x2, x3, x1 and a non-collider on the path x2, x3, x4.

A node xi is an ancestor of a node xj if there exists a directed path
from xi to xj . In this case, xj is a descendant of xi.

A graphical model is a graph in which nodes represent random vari-
ables and links express statistical relationships between the variables.

A belief network is a directed acyclic graphical model in which each
node xi is associated with the conditional distribution p(xi|par(xi)),
where par(xi) indicates the parents of xi. The joint distribution of all
nodes in the graph, p(x1:D), is given by the product of all conditional
distributions, i.e.

p(x1:D) =
D∏
i=1

p(xi|par(xi)).

The belief network corresponding to Equation (2.1), and therefore rep-
resenting the HMM, is given in Figure 2.2(c).

Assessing statistical independence in belief networks

Method I. Given the sets of random variables X ,Y and Z, X and Y
are statistically independent given Z (X ⊥⊥ Y |Z) if all paths from any
element of X to any element of Y are blocked. A path is blocked if at
least one of the following conditions is satisfied:

(Ia) There is a non-collider on the path which belongs to the condi-
tioning set Z.

(Ib) There is a collider on the path such that neither the collider nor
any of its descendants belong to the conditioning set Z.
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· · · st−2 st−1 st st+1 · · ·

vt−2 vt−1 vt vt+1

(a)

· · · st−2 st−1 st

vt−2 vt−1 vt

(b)

Figure 2.3: (a): Belief network representing the extension of the HMM in which the
observations are related by first-order Markovian dependence, as indicated by the
link from vt−1 to vt. (b): Undirected graph obtained from the belief network in (a)
after performing steps (IIa) and (IIb) with X = vt,Y = v1:t−2 and Z = {st, vt−1}.

Method II. This method converts the directed graph into an undi-
rected one and then uses the rule of independence for undirected
graphs. This is achieved with the following steps:

(IIa) Create the ancestral graph: Remove all nodes that are not in
X ∪ Y ∪ Z and are not ancestors of a node in this set, together
with all links in or out of such nodes.

(IIb) Moralize: Add a link between any two nodes that have a common
child. Remove arrowheads.

(IIc) Use the independence rule for undirected graphs: X ⊥⊥ Y |Z if
all paths connecting a node in X with one in Y pass through a
member of Z.

In Figure 2.3(b) we display the undirected graph obtained from the
belief network shown in Figure 2.3(a) after performing steps (IIa) and
(IIb) with X = vt,Y = v1:t−2 and Z = {st, vt−1}.

2.2.1 Inference in MSMs

In this section we illustrate how the formalism of graphical models can
be used to derive the standard inference recursions of MSMs.

We consider the extension of the HMM in which the observations
(given the regime variables) are related by kth-order Markovian depen-
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dence, i.e. the joint distribution factorizes as3

p(s1:T , v1:T ) =
T∏
t=1

p(vt|st, vt−k:t−1)p(st|st−1).

The introduction of Markovian dependence corresponds to adding links
from past to current observations to the belief network representing
the HMM, as shown in Figure 2.3(a) for the case of first-order de-
pendence. The most popular model within this class is the switching
autoregressive model [Hamilton, 1989, 1990, 1993], also called autore-
gressive HMM, defined as

p(vt|st, vt−k:t−1) = N
(
vt;

k∑
i=1

asti vt−i, (σ
st)2

)
, (2.2)

where N (x;µ, σ2) denotes a Gaussian distribution on variable x with
mean µ and variance σ2, and asti is called autoregressive coefficient.

As discussed in Chapter 1, these types of models are often used for
time series segmentation. A segmentation can be obtained by com-
puting s∗t = arg maxst α

st
t where αstt = p(st|v1:t) is called the fil-

tered distribution, s∗t = arg maxst γ
st
t where γstt = p(st|v1:T ) is called

the smoothed distribution, or the most likely sequence of regimes
s∗1:T = arg maxs1:T p(s1:T |v1:T ). Unknown model parameters can be
learned with similar quantities. These quantities can be efficiently com-
puted using time-recursive routines, namely routines which at each
time-step make use of computations previously performed at the pre-
ceding or following time-step (e.g. αstt can be computed from α

st−1
t−1 and

γstt can be computed from γ
st+1
t+1 ).

In the following sections we describe the two most common ap-
proaches to compute the filtered and smoothed distributions, namely
parallel and sequential filtering-smoothing, and an extension of Viterbi
decoding for computing the most likely sequence of regimes.

The approaches described can be applied to all models in which the
unobserved variables form a first-order Markov chain – including the
case in which these variables are continuous, by replacing sums with

3We use the convention xt = ∅ for t ≤ 0. The HMM can be obtained as a special
case by setting k = 0, with the convention xt:t′ = ∅ for t > t′.
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integrations – although computational tractability is not guaranteed.
As the explicit-duration MSMs described in Chapter 3 are extensions
of the standard MSMs in which the combined regime and explicit-
duration variables, σ1:T , form a first-order Markov chain, we will be
able to use similar approaches to derive inference recursions for σ1:T ,
which will then be simplified using the deterministic constraints of the
Markov chain. Furthermore, as the continuous unobserved variables of
the explicit-duration linear Gaussian state-space model described in
§3.5 are related by first-order Markovian dependence, we will also be
able to use similar approaches to derive inference recursions on these
variables. In the case considered in §3.4.3, in which the time series is
formed by segments whose observations are related by non-Markovian
dependence, time-steps at the segment boundaries only will need to be
considered, giving rise to segment-recursive routines.

Parallel filtering-smoothing

The filtered distribution αstt = p(st|v1:t) can be obtained by normalizing
ᾱstt = p(st, v1:t), where ᾱstt can be recursively computed as4

ᾱstt = p(vt|st,((((v1:t−k−1, vt−k:t−1)
∑
st−1

p(st|st−1,���v1:t−1)p(st−1, v1:t−1)

= p(vt|st, vt−k:t−1)
∑
st−1

πstst−1ᾱ
st−1
t−1 . (2.3)

The independence relation vt ⊥⊥ v1:t−k−1 | {st, vt−k:t−1} can be graphi-
cally assessed by observing that (considering, for simplicity, k = 1) all
paths from v1:t−2 to vt are blocked, as vt is reached by passing from:
(i) both st and vt−1, (ii) st only, (iii) vt−1 only (Figure 2.3(a)). In cases
(i) and (ii), st is a non-collider on the path that belongs to the condi-
tioning set. In case (iii), vt is a non-collider on the path that belongs to
the conditioning set. Therefore, in all cases condition (Ia) is satisfied5.

4The initialization is given by ᾱs1
1 = p(v1|s1)π̃s1 .

5 Alternatively, we can apply steps (IIa) and (IIb) to the belief network shown
in Figure 2.3(a), obtaining the undirected graph shown in Figure 2.3(b), and ob-
serve that all paths from v1:t−2 to vt pass through st or vt−1, which belong to the
conditioning set.
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The independence relation st ⊥⊥ v1:t−1 | st−1 holds since all paths from
v1:t−1 to st reach st from: (i) the non-collider st−1 that belongs to the
conditioning set, (ii) the collider vt that (as well as all its descendants)
does not belong to the conditioning set, (iii) st+1 that imposes passing
through a collider (e.g. vt+1) that (together with all its descendants)
does not belong to the conditioning set.
The smoothed distribution γstt = p(st|v1:T ) can be obtained as6

γstt ∝ p(st, v1:T ) = p(vt+1:T |st,���v1:t−k, vt−k+1:t)p(st, v1:t) = βstt ᾱ
st
t ,

where βstt = p(vt+1:T |st, vt−k+1:t) can be recursively computed as7

βstt =
∑
st+1

p(vt+1:T |��st, st+1, vt−k+1:t)p(st+1|st,����vt−k+1:t)

=
∑
st+1

p(vt+2:T |st+1,���
�vt−k+1, vt−k+2:t+1)p(vt+1|st+1, vt−k+1:t)πst+1st

=
∑
st+1

β
st+1
t+1 p(vt+1|st+1, vt−k+1:t)πst+1st . (2.4)

Notice that recursions (2.3) and (2.4) can be performed in parallel.
Neglecting the cost of estimating p(vt|st, vt−k:t−1), the recursions have
computational cost O(TS2). In order to avoid numerical underflow or
overflow, the computations are commonly performed in the log domain.

Sequential filtering-smoothing

An alternative way of performing filtering-smoothing is to first compute
the filtered distribution αstt = p(st|v1:t) as

αstt = p(st, vt|v1:t−1)
p(vt|v1:t−1) =

p(vt|st, vt−k:t−1)
∑
st−1 πstst−1α

st−1
t−1∑

s̃t p(vt|s̃t, vt−k:t−1)
∑
st−1 πs̃tst−1α

st−1
t−1

,

6The normalization term p(v1:T ) can be estimated as p(v1:T ) =
∑

st
ᾱst
T .

7The initialization is given by βsT
T = 1.
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and then compute the smoothed distribution γstt = p(st|v1:T ) as

γstt =
∑
st+1

p(st|st+1, v1:t,����vt+1:T )p(st+1|v1:T )

=
∑
st+1

p(st+1|st,��v1:t)p(st|v1:t)∑
s̃t p(st+1|s̃t,��v1:t)p(s̃t|v1:t)

γ
st+1
t+1

=
∑
st+1

πst+1stα
st
t∑

s̃t πst+1s̃tα
s̃t
t

γ
st+1
t+1 . (2.5)

These routines do not require working in the log domain.

Extended Viterbi

With the definition ξstt = maxs1:t−1 p(s1:t, v1:t), the most likely sequence
of regimes s∗1:T = arg maxs1:T p(s1:T |v1:T ) can be obtained with the
following extension of the Viterbi algorithm [Rabiner, 1989]:

ξs1
1 = p(s1, v1) = ᾱs1

1

for t = 2, . . . , T
ξstt = p(vt|st, vt−k:t−1) max

st−1
πstst−1ξ

st−1
t−1 , ψ

st
t = arg max

st−1
πstst−1ξ

st−1
t−1

s∗T = arg max
sT

ξsTT

for t = T−1, . . . , 1

s∗t = ψ
s∗t+1
t+1 ,

where the recursion for ξstt is obtained as the recursion for ᾱstt with the
sum replaced by the max operator.

2.3 Expectation Maximization

The expectation maximization (EM) algorithm [Dempster et al., 1977,
McLachlan and Krishnan, 2008] is a popular iterative approach for pa-
rameter estimation in probabilistic models with unobserved variables.
From a modern variational viewpoint [Bishop, 2006, Barber, 2012], EM
replaces the maximization of the log-likelihood log p(V|θ) of observa-
tions V, in which summation/integration over the unobserved variables



2.3. Expectation Maximization 17

H couples parameters θ, with the maximization of a lower bound that
has a decoupled form in the parameters θV and θH corresponding to
observed and unobserved variables respectively. More specifically, con-
sider the distribution q and the Kullback-Leibler (KL) divergence

KL(q(H|V)||p(H|V, θ)) = 〈log q(H|V)− log p(H,V|θ)
p(V|θ) 〉q(H|V) ,

where 〈·〉q indicates averaging with respect to q. As the KL divergence
is always nonnegative, log p(V|θ) can be lower-bounded as

log p(V|θ) ≥ −〈log q(H|V)〉q(H|V)︸ ︷︷ ︸
Entropy

+ 〈log p(H,V|θ)〉q(H|V)︸ ︷︷ ︸
Energy

.

For q(H|V) = p(H|V, θ̄), where θ̄ is a fixed set of parameters, the en-
tropy does not depend on θ and the energy, also called expectation of
the complete data log-likelihood, has a decoupled form, i.e.

〈log p(H,V|θ)〉p(H|V,θk) =〈log p(V|H,θV)〉p(H|V,θk)+〈log p(H|θH)〉p(H|V,θk).

At iteration k of EM, the following two steps are performed:

• E-step: Compute the marginal distributions of p(H|V, θk−1) re-
quired to carry out the M-step, where θk−1 is the set of parame-
ters estimated at iteration k − 1.

• M-step: Compute θk = arg maxθ〈log p(H,V|θ)〉p(H|V,θk−1).

At each iteration, the log-likelihood is guaranteed not to decrease. In-
deed

log p(V|θk)− log p(V|θk−1) = KL(p(H|V, θk−1)||p(H|V, θk))
+ 〈log p(H,V|θk)〉p(H|V,θk−1)

− 〈log p(H,V|θk−1)〉p(H|V,θk−1)

≥ 0,

as the KL divergence is always nonnegative and, by construction,
〈log p(H,V|θk)〉p(H|V,θk−1) ≥ 〈log p(H,V|θ)〉p(H|V,θk−1) for all θ, and
therefore also for θk−1. Under general conditions, this iterative ap-
proach is guaranteed to converge to a local maximum of log p(V|θ).

In Appendix A.1 we show how to apply the EM algorithm to learn
the parameters of the switching autoregressive model (2.2).



3
Explicit-Duration Modelling

In Chapter 2 we have shown that, in standard MSMs, the regime vari-
ables implicitly define a geometric duration distribution, and that a
negative binomial duration distribution can be obtained with regime
copies. Explicit-duration MSMs use extra unobserved variables to ex-
plicitly model the duration distribution, such that duration distribu-
tions of any form can be defined. Additionally, explicit-duration vari-
ables give the possibility to impose complex dependence between the
observations and to reset the dynamics to initial conditions. In this
chapter we describe the different ways in which explicit-duration mod-
elling can be achieved, and analyse their characteristics in models of
simple unobserved structure and in models with extra unobserved vari-
ables related by first-order Markovian dependence (the case of more
complex unobserved structure is not considered).

Explicit-duration variables influence the time spent in a regime by
allowing st to differ from st−1 (through sampling from the transition
distribution πstst−1) only if the variables take certain values, and by
forcing st to be equal to st−1 otherwise. This is achieved by defining a
first-order Markov chain on the combined regime and explicit-duration
variables σ1:T . Realizations of the chain partition the time series into

18
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segments, with boundaries at those time-steps in which sampling occurs
and with durations distributed according to specified segment-duration
distributions.

If πstst = 0, as it is most commonly assumed, a segment begins
when a change of regime occurs; whilst if πstst 6= 0, as it may be
desirable or required for certain tasks (e.g. for detecting changepoints
or for identifying repetitions of patterns), segment beginnings do not
coincide with regime changes.

The first-order Markov chain on σ1:T can be defined using three
fundamentally different encodings for the explicit-duration variables.
More specifically, we can encode distance to current-segment end using
count variables c1:T that decrease within a segment; distance to current-
segment beginning using count variables c1:T that increase within a
segment; or distance to both current-segment beginning and current-
segment end using decreasing or increasing count variables and dura-
tion variables d1:T indicating current-segment duration.

Different encoding leads to different possible structures for the dis-
tribution p(v1:T |σ1:T ). More specifically, increasing count variables and
count-duration variables always enable the factorization of p(v1:T |σ1:T )
across segments (across-segment independence). Furthermore, count-
duration variables allow any structure within a segment, as segment-
recursive inference can be performed; whist count variables only al-
low a distribution that can be efficiently computed as (omitting con-
ditioning on σ1:T )

∏
t p(vt|v1:t−1), as only time-recursive inference can

be performed. Examples of models with distributions that can be ef-
ficiently computed as

∏
t p(vt|v1:t−1) are the explicit-duration exten-

sions of the MSMs analysed in §2.2.1, the explicit-duration extension
of the switching linear Gaussian state-space model described in §3.5 –
in which the Markovian structure of the hidden dynamics h1:T enables
time-recursive computation of p(vt|v1:t−1), and the model in Fearn-
head and Vasileiou [2009] – in which observations vt−d+1:t forming a
segment generated by regime j are linked through integration over pa-
rameters θj , i.e. p(vt−d+1:t) =

∫
p(θj)

∏t
τ=t−d+1 p(vτ |θj)dθj , so that

p(vτ |vt−d+1:τ−1) = p(vt−d+1:τ )/p(vt−d+1:τ−1).
In models with extra unobserved variables related by first-order
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Markovian dependence in addition to σ1:T , for which inference is more
complex, different encoding leads to different computational cost and,
potentially, to different approximation requirements.

Taking the viewpoint in [Murphy, 2002], the original and currently
standard approach to explicit-duration modelling [Ferguson, 1980, Ra-
biner, 1989, Ostendorf et al., 1996, Yu, 2010] considers duration vari-
ables d1:T and variables c1:T such that, e.g., ct = 1 at the end of the
segment and ct = 2 otherwise. These variables can be seen as collapsed
count variables that encode information about whether (rather than
where) the segment is ending, such that information about segment
beginning and segment end is available only at the end of the segment.
Therefore this approach is a special case of the count-duration-variable
approach. The possible structures for p(v1:T |σ1:T ) are the same as with
count-duration variables. However, as σ1:T do not form a first-order
Markov chain, deriving posterior distributions of interest is less im-
mediate than with count-duration variables. All other approaches to
explicit-duration modelling in the literature use explicit-duration vari-
ables that encode the same information about segment boundaries as
decreasing count variables, increasing count variables or count-duration
variables, although the parametrizations can be different.

The remainder of the chapter is organized as follows. In §3.1, §3.2
and §3.3, we describe the three approaches to explicit-duration mod-
elling in generality. In §3.4 we analyse in detail explicit-duration mod-
elling for MSMs with simple unobserved structure. In §3.5, we anal-
yse in detail explicit-duration modelling for the more complex switch-
ing linear Gaussian state-space model, using an approach to inference
that allows to understand how the results generalize to similar models
with extra unobserved variables related by first-order Markovian de-
pendence. In §3.6 we discuss approximation schemes for reducing the
computational cost of inference. We focus our exposition on parametric
segment-duration distributions defined on the set {dmin, . . . , dmax} (for
simplicity, we assume dmin and dmax to be regime-independent). The
computational cost of inference is computed assuming dmin = 1.
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3.1 Decreasing Count Variables

This approach uses variables c1:T taking decreasing values within a seg-
ment, starting from the segment duration and ending with 1. Therefore,
ct indicates that the current segment ends at time-step t+ ct−1. More
specifically, the joint distribution p(σ1:T ), where σt = (st, ct), has the
following first-order Markovian structure:

p(σ1:T )=p(σ1)
T∏
t=2

p(σt|σt−1) = p(c1|s1)p(s1)
T∏
t=1

p(ct|st, ct−1)p(st|σt−1),

with1

p(st|σt−1)=

πstst−1 if ct−1 =1
δst=st−1 if ct−1>1,

p(ct|st, ct−1)=

ρσt if ct−1 =1
δct=ct−1−1 if ct−1>1,

p(s1) = π̃s1 , and p(c1|s1) = ρ̃σ1 , and where ρ̃ and ρ are a vector
and a matrix that specify the segment-duration distribution on the
set {dmin, . . . , dmax}. We assume dmax < T , unless otherwise specified.
In this encoding, we can impose that the last segment ends at the last
time-step (cT = 1) with a time-dependent ρ, or condition inference on
this event. In this case, only ct ≤ min(T − t + 1, dmax) needs to be
considered. This constraint is necessary if dmax = ∞. We cannot im-
pose that the first segment starts at the first time-step, nor condition
inference on this event.

Notice that ct−1 > 1 implies σt = (st−1, ct−1 − 1), i.e. p(σt =
(st−1, ct−1 − 1)|st−1, ct−1 > 1) = 1 (also when conditioning on the
observations). We will make extensive use of this result in §3.5.1.

3.2 Increasing Count Variables

This approach uses variables c1:T taking increasing values within a seg-
ment, starting from 1 and ending with the segment duration. Therefore,
ct indicates that the current segment begins at time-step t−ct+1. More
specifically, the joint distribution p(σ1:T ), where σt = (st, ct), has the

1The term δx=y has value 1 if x = y and 0 otherwise.
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following first-order Markovian structure:

p(σ1:T )=p(σ1)
T∏
t=2

p(σt|σt−1) = p(c1|s1)p(s1)
T∏
t=2

p(st|st−1, ct)p(ct|σt−1),

with

p(st|st−1, ct)=

πstst−1 if ct=1
δst=st−1 if ct>1,

p(ct|σt−1)=

λσt−1 if ct=ct−1+1
1−λσt−1 if ct=1,

p(s1) = π̃s1 , and p(c1|s1) = λ̃σ1 , and where λσt = 0 for ct ≥ dmax, and
λσt = 1 for ct < dmin. For simplicity, consider the case in which λσt
depends on the count variable only (λσt = λct). The probability that
a segment, starting at time-step t, ends at time-step t+ d− 1 (i.e. the
probability of segment duration d) is

p(ct+1:t+d−1 = 2, . . . , d, ct+d=1|ct=1)=

(1−λd)
∏d−1
k=1 λk if d < dmax∏d−1

k=1 λk if d = dmax.

The term λd represents the probability of segment duration > d, given
segment duration ≥ d. Indeed

p(ct+1:t+d = 2, . . . , d+ 1|ct = 1)
p(ct+1:t+d−1 = 2, . . . , d|ct = 1) =

∏d
k=1 λk∏d−1
k=1 λk

= λd .

Therefore, the term 1− λd represents the probability of segment dura-
tion d, given segment duration ≥ d. The relation between λd and the
segment-duration distribution in §3.1 is given by

λd = 1−
∑d
k=1 ρk

1−
∑d−1
k=1 ρk

=
∑dmax
k=d+1 ρk∑dmax
k=d ρk

= 1− ρd∑dmax
k=d ρk

.

The term λ̃c1 represents the probability that the first segment starts at
time-step 2−c1. Therefore, we can impose that the first segment starts
at the first time-step (c1 = 1) by setting λ̃1 = 1. In this case, p(ct >
t) = 0 and thus only ct ≤ min(t, dmax) needs to be considered. This
constraint is necessary if dmax = ∞ (e.g. if λσt−1 does not depend on
ct−1, which corresponds to a geometric segment-duration distribution).
In this encoding we cannot impose that the last segment ends at the
last time-step, nor condition inference on this event.

Notice that ct > 1 implies σt−1 = (st, ct − 1), i.e. p(σt−1 = (st, ct −
1)|st, ct > 1) = 1. We will make extensive use of this result in §3.5.2.
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3.3 Count-Duration Variables

This approach uses either decreasing or increasing count variables c1:T ,
and duration variables d1:T indicating the duration of the current seg-
ment. With decreasing count variables, (ct, dt) indicates that the cur-
rent segment starts at time-step t−dt+ct and ends at time-step t+ct−1.
More specifically, the joint distribution p(σ1:T ), where σt = (st, dt, ct),
has the following first-order Markovian structure:

p(σ1:T ) = p(σ1)
T∏
t=2

p(σt|σt−1)

= p(c1|d1)p(d1|s1)p(s1)
T∏
t=2

p(ct|dt, ct−1)p(dt|dt−1, ct−1)p(st|st−1, ct−1),

with

p(st|st−1, ct−1) =

πstst−1 if ct−1 =1
δst=st−1 if ct−1>1,

p(dt|dt−1, ct−1, st) =

ρstdt if ct−1 =1
δdt=dt−1 if ct−1>1,

p(ct|ct−1, dt) =

δct=dt if ct−1 =1
δct=ct−1−1 if ct−1>1,

p(s1) = π̃s1 , p(d1|s1) = ρ̃s1d1 , and p(c1|d1) = ˜̃ρd1c1 .
The term ˜̃ρd1c1 represents the probability that the first segment of

duration d1 ends at time-step c1. Therefore, we can impose that the
first segment starts at the first time-step by setting ˜̃ρd1d1 = 1. In this
case, p(dt > t, ct = 1) = 0 and thus only dt ≤ min(t, dmax) needs
to be considered. This constraint is necessary if dmax = ∞. We can
impose that the last segment ends at the last time-step (cT = 1) with
a time-dependent ρ, or condition inference on this event.

Notice that ct < dt implies σt−1 = (st, dt, ct + 1), i.e. p(σt−1 =
(st, dt, ct + 1)|st, dt, ct < dt) = 1. In addition, ct−1 > 1 implies σt =
(st−1, dt−1, ct−1 − 1), i.e. p(σt = (st−1, dt−1, ct−1 − 1)|st−1, dt−1, ct−1 >

1) = 1. We will make extensive use of this result in §3.5.3 and Ap-
pendix A.5.
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3.4 Explicit-Duration MSMs p(σ1:T , v1:T )

In this section, we describe explicit-duration modelling for MSMs that
contain only regime and explicit-duration variables σ1:T and observa-
tions v1:T

2. Models with additional unobserved variables that are inde-
pendent can be treated similarly.

3.4.1 Decreasing Count Variables

As explained above, decreasing count variables allow a distribution
p(v1:T |σ1:T ) that can be efficiently computed as

∏
t p(vt|σt, v1:t−1). For

models that contain only σ1:T and v1:T , this translates into Markovian
dependence between the observations. This type of models is repre-
sented by the belief network shown in Figure 3.1 (for Markovian order
k = 1). Dependence across segments can be cut only for k = 1 with
a link from ct−1 to vt. In the following sections we derive inference re-
cursions by using the approach described in §2.2.1 and by exploiting
the deterministic part of the first-order Markov chain formed by σ1:T
to obtain simplifications.

Parallel filtering-smoothing

The filtered distribution ασtt = p(σt|v1:t) can be obtained by normaliz-
ing ᾱσtt = p(σt, v1:t), where ᾱσtt can be computed as3

ᾱσtt = p(vt|st,��ct,((((v1:t−k−1, vt−k:t−1)
∑
σt−1

p(σt|σt−1,���v1:t−1)p(σt−1, v1:t−1)

= p(vt|st, vt−k:t−1)
{
δct<dmax
st−1=st
ct−1=ct+1

+ δct≥dmin
ct−1=1

ρσt
∑
st−1

πstst−1

}
ᾱ
σt−1
t−1 . (3.1)

With pre-computation of
∑
st−1 πstst−1ᾱ

st−1,1
t−1 , which does not depend

on ct, this recursion has computational cost O(TS(S+Edmax)), where
E is the cost of computing estt = p(vt|st, vt−k:t−1).

2In Appendix A.2 we show that, if a geometric duration distribution is used, a
model which is similar to the standard HMM is retrieved.

3The initialization is given by ᾱσ1
1 = p(v1|s1)π̃s1 ρ̃σ1 .
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· · · ct−1 ct ct+1 · · ·

st−1 st st+1

vt−1 vt vt+1

Figure 3.1: MSM in which the segment-duration distribution is explicitly modelled
using decreasing count variables c1:T .

The smoothed distribution γσtt = p(σt|v1:T ) can be obtained as
γσtt ∝ p(vt+1:T |σt,���v1:t−k, vt−k+1:t)p(σt, v1:t) = βσtt ᾱ

σt
t , where βσtt =

p(vt+1:T |σt, vt−k+1:t) can be computed as4

βσtt =
∑
σt+1

p(vt+1:T |��σt, σt+1, vt−k+1:t)p(σt+1|σt,����vt−k+1:t)

=
∑
σt+1

p(vt+2:T |σt+1,���
�vt−k+1, vt−k+2:t+1)p(vt+1|st+1,���ct+1, vt−k+1:t)

× p(σt+1|σt)

= δct>1e
st
t+1β

st,ct−1
t+1 + δct=1

∑
st+1

e
st+1
t+1 πst+1st

∑
ct+1

ρσt+1β
σt+1
t+1 .

With pre-computation of
∑
ct+1 ρσt+1β

σt+1
t+1 , which does not depend on

st, this recursion has cost O(TS(S + dmax)).

Sequential filtering-smoothing

The filtered distribution ασtt = p(σt|v1:t) can be computed as

ασtt = p(σt, vt|v1:t−1)
p(vt|v1:t−1)

∝ p(vt|st,��ct,((((v1:t−k−1, vt−k:t−1)
∑
σt−1

p(σt|σt−1,���v1:t−1)p(σt−1|v1:t−1)

= p(vt|st, vt−k:t−1)
{
δct<dmax
st−1=st
ct−1=ct+1

+ δct≥dmin
ct−1=1

ρσt
∑
st−1

πstst−1

}
α
σt−1
t−1 .

4The initialization is given by βσT
T = 1. Setting βσT

T = 0 for cT > 1 corresponds to
conditioning inference on the event cT = 1. In this case, only ct ≤ min(T−t+1, dmax)
needs to be considered.
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With pre-summation over st−1 as in recursion (3.1), this recursion has
cost O(TS(S + Edmax)).

The smoothed distribution γσtt = p(σt|v1:T ) can be computed as

γσtt =
∑
σt+1

p(σt|σt+1, v1:t,����vt+1:T )p(σt+1|v1:T )

=
∑
σt+1

p(σt+1|σt,��v1:t)p(σt|v1:t)∑
σ̃t p(σt+1|σ̃t,��v1:t)p(σ̃t|v1:t)

γ
σt+1
t+1

= δct>1
ασtt γ

st,ct−1
t+1

ασtt +δct>dminρstct−1
∑
s̃t πsts̃tα

s̃t,1
t

+δct=1α
st,1
t

∑
st+1

πst+1st

∑
ct+1

ρσt+1γ
σt+1
t+1

δct+1<dmaxα
st+1,ct+1+1
t +ρσt+1

∑
s̃t πst+1s̃tα

s̃t,1
t

.

which, with pre-summation over ct+1, has cost O(TS(S + dmax)).

Extended Viterbi

With the definition ξσtt = maxσ1:t−1 p(σ1:t, v1:t), the most likely se-
quence σ∗1:T = arg maxσ1:T p(σ1:T |v1:T ) can be obtained as follows:

ξσ1
1 = p(σ1, v1) = ᾱσ1

1

for t = 2, . . . , T

ξσtt =


estt ξ

st,ct+1
t−1 if ct<dmin

estt max[ξst,ct+1
t−1 , ρσt max

st−1
πstst−1ξ

st−1,1
t−1 ] if dmin≤ct<dmax

estt ρσt max
st−1

πstst−1ξ
st−1,1
t−1 if ct=dmax

ψσtt =


(arg max

st−1
πst,st−1ξ

st−1,1
t−1 , 1) if ct=dmax, or dmin≤ct<dmax

& ρσt max
st−1

πstst−1ξ
st−1,1
t−1 >ξst,ct+1

t−1

(st, ct+1) otherwise

σ∗T = arg max
σT

ξσTT

for t = T−1, . . . , 1

σ∗t = ψ
σ∗t+1
t+1 .
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Segment-duration distribution learning

The part of the expectation of the complete data log-likelihood that
depends on ρσt is

∑T
t=2

∑
σt p(ct−1 = 1, σt|v1:T ) log ρσt , giving update

ρσt =
∑
t p(ct−1 =1, σt|v1:T )∑

t,c̃t p(ct−1 =1, st, c̃t|v1:T )

∝
∑
t

ρσtγ
σt
t

δct<dmaxα
st,ct+1
t−1 + ρσt

∑
s̃t−1 πsts̃t−1α

s̃t−1,1
t−1

.

When ρ is high dimensional, the number of parameters to be estimated
can be reduced by constraining ρσt to be the same for count variables
in a neighbourhood.

Artificial data example

In this section, we illustrate the benefit of explicit-duration modelling
on an artificial time series generated from the following switching au-
toregressive process:

a1
1 = 1.8, a1

2 − 0.92; a2
1 = 1.75, a2

2 = −0.95; a3
1 = 1.8, a3

2 = −0.98
t=0
for k=1, . . . , 100

Sample a regime s∈{1, 2, 3} from π̃ with π̃j =1/3 for t=0,
and from π with πii=0 and πji=1/2 for t>0.
Sample a duration d∈{30, . . . , 120} from the distribution
obtained by discretizing and truncating a Gaussian distribution
with mean 75 and variance 500.
for τ=1, . . . , d

Generate vt+τ =
2∑
i=1

asivt+τ−i + ηt , ηt ∼ N (ηt; 0, σ2) (3.2)

t= t+d

The time series up to the first 30 regime changes is shown at the top of
Figure 3.2. Notice that the underlying regimes are difficult to identify,
as the autoregressive coefficients are very similar and the transition
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Figure 3.2: Top: Segmentation up to the first 30 regime changes of the time
series generated from the switching autoregressive process (3.2). The numbers at
the top and bottom indicate the regimes and the durations respectively. Bottom:
Segmentations obtained with SARM and GSARM using smoothing and extended
Viterbi. The correct segmentation is indicated with bars.

matrix π is uninformative; and that it is not clear whether knowledge
of the segment-duration distribution can aid the identification, as this
is shared across regimes and has high variance.

We compared the segmentations obtained with a standard switch-
ing autoregressive model (SARM) and its explicit-duration extension
employing the discretized truncated Gaussian distribution used to gen-
erate the time series (GSARM), assuming that the autoregressive co-
efficients and noise variance were known. SARM used the maximum
likelihood values of π̃ and π estimated using the correct segmentation.

In Figure 3.3(a) we plot the empirical segment-duration distribution
(continuous line), the geometric segment-duration distribution implic-
itly defined in SARM (dashed line), and the segment-duration distri-
bution used in GSARM (dotted line).
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Figure 3.3: (a): Empirical segment-duration distribution (continuous line), geo-
metric segment-duration distribution implicitly defined in SARM (dashed line),
and segment-duration distribution used in GSARM (dotted line). (b): Empirical
segment-duration distribution of the estimated segmentation for SARM (left) and
GSARM (right) using smoothing (top) and extended Viterbi (bottom).

The segmentations, obtained by estimating s∗t = arg maxst
∑
ct γ

σt
t

(smoothing) and σ∗1:T = arg maxσ1:T p(σ1:T |v1:T ) (extended Viterbi),
are displayed at the bottom of Figure 3.2. As a measure of segmenta-
tion error, we used the discrepancy between the correct and the esti-
mated regimes. SARM gave 30% error with smoothing and 43% error
with extended Viterbi, whilst GSARM gave 18% error with smoothing
and 25% with extended Viterbi.

In Figure 3.3(b) we plot the empirical segment-duration distribu-
tions estimated from the segmentations.

3.4.2 Increasing Count Variables

Like decreasing count variables, increasing count variables allow Marko-
vian dependence among the observations. For Markovian order k = 1,
this type of models is represented by the belief network shown in Figure
3.4(a). Across-segment independence can be enforced by adding a link
from ct to vt (as shown in Figure 3.4(b) and explicitly represented in
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ct−1 ct ct+1

st−1 st st+1

vt−1 vt vt+1

(a)

ct−1 ct ct+1

st−1 st st+1

vt−1 vt vt+1

(b)

ct−1 ct ct+1

st−1 st st+1

vt−1 vt vt+1

ct+1 = 2

(c)

Figure 3.4: (a): MSM in which the segment-duration distribution is explicitly mod-
elled using increasing count variables c1:T . (b): Across-segment independence is en-
forced with a link from ct to vt. (c): Explicit representation of across-segment inde-
pendence. The values ct+1 = 2 indicates that the segment passing through time-step
t+ 1 starts at time-step t+ 1− ct+1 + 1 = t.

Figure 3.4(c)), such that p(vt|σt, vt−k:t−1) = p(vt|σt, vt−min(ct,k)+1:t−1).
In the following sections we describe inference assuming across-

segment independence.

Parallel filtering-smoothing

The filtered distribution ασtt = p(σt|v1:t) can be obtained by normaliz-
ing ᾱσtt = p(σt, v1:t), where ᾱσtt can be computed as5

ᾱσtt = p(vt|σt,((((v1:t−k−1, vt−k:t−1)
∑
σt−1

p(σt|σt−1,���v1:t−1)p(σt−1, v1:t−1)

= eσtt

{
δct>1
st−1=st
ct−1=ct−1

λσt−1+ δct=1
∑
st−1

πstst−1

∑
ct−1

(1−λσt−1)
}
ᾱ
σt−1
t−1 , (3.3)

with eσtt = p(vt|σt, vt−min(ct,k)+1:t−1). With pre-computation of∑
ct−1(1 − λσt−1)ᾱσt−1

t−1 , which does not depend on st, this recursion
has cost O(TS(S + Edmax)), where E is the cost of computing eσtt .

Notice that ᾱσtt = 0 implies ᾱst,ct+1
t+1 = . . . = ᾱst,dmax

t+dmax−ct = 0, i.e. if
according to v1:t a segment starting at time-step t−ct+1 and generated
by st cannot have duration ≥ ct, that segment cannot have duration
≥ ct + 1 after incorporating observations vt+1, etc. This result can be

5The initialization is given by ᾱσ1
1 = p(v1|s1)π̃s1 λ̃σ1 .
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used to design approximation schemes for reducing the computational
cost by pruning some ᾱσtt , see §3.6.

The smoothed distribution γσtt = p(σt|v1:T ) can be obtained as
γσtt ∝ p(vt+1:T |σt,���v1:t−k, vt−k+1:t)p(σt, v1:t) = βσtt ᾱ

σt
t , where βσtt =

p(vt+1:T |σt, vt−k+1:t) can be computed as6

βσtt =
∑
σt+1

p(vt+1:T |��σt, σt+1, vt−k+1:t)p(σt+1|σt,����vt−k+1:t)

=
∑
σt+1

p(vt+2:T |σt+1,���
�vt−k+1, vt−k+2:t+1)p(vt+1|σt+1, vt−k+1:t)p(σt+1|σt)

=
{
δct<dmax
st+1=st
ct+1=ct+1

λσt + δct≥dmin
ct+1=1

(1−λσt)
∑
st+1

πst+1st

}
e
σt+1
t+1 β

σt+1
t+1 .

With pre-computation of
∑
st+1 πst+1ste

st+1,1
t+1 β

st+1,1
t+1 , which does not de-

pend on ct, this recursion has cost O(TS(S + dmax)).

Sequential filtering-smoothing

The filtered distribution ασtt = p(σt|v1:t) can be obtained as ασtt =
p(σt,vt|v1:t−1)
p(vt|v1:t−1) , where the numerator can be computed as in recursion

(3.3).
The smoothed distribution γσtt = p(σt|v1:T ) can be computed as

γσtt =
∑
σt+1

p(σt|σt+1, v1:t,����vt+1:T )p(σt+1|v1:T ) (3.4)

=δct<dmaxγ
st,ct+1
t+1 + δct≥dmin

ct+1=1

∑
st+1

p(σt+1|σt,��v1:t)p(σt|v1:t)∑
σ̃t p(σt+1|σ̃t,��v1:t)p(σ̃t|v1:t)

γ
σt+1
t+1

=δct<dmaxγ
st,ct+1
t+1 + δct≥dmin

ct+1=1
(1−λσt)ασtt

∑
st+1

πst+1stγ
σt+1
t+1∑

s̃tπst+1s̃t

∑
c̃t(1−λσ̃t)α

σ̃t
t

,

where we have used p(σt|σt+1 = (st, ct + 1), v1:t) = 1. With pre-
summation over st+1, this recursion has cost O(TS(S + dmax)).

Notice that ασtt = 0 implies γσtt = γst,ct+1
t+1 = . . . = γst,dmax

t+dmax−ct = 0.

6The initialization is given by βσT
T = 1.
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Extended Viterbi

With the definition ξσtt = maxσ1:t−1 p(σ1:t, v1:t), the most likely se-
quence σ∗1:T = arg maxσ1:T p(σ1:T |v1:T ) can be obtained as follows:

ξσ1
1 = p(σ1, v1) = ᾱσ1

1

for t = 2, . . . , T
for ct = 1, . . . , dmax

ξσtt =

e
σt
t max

st−1
πstst−1 max

ct−1
(1−λσt−1)ξσt−1

t−1 if ct=1

eσtt λst−1ct−1ξ
st,ct−1
t−1 if ct>1

ψσtt =


arg max
st−1

πstst−1 arg max
ct−1

(1−λσt−1)ξσt−1
t−1 if ct=1

(st, ct−1) if ct>1

σ∗T = arg max
σT

ξσTT

for t = T−1, . . . , 1

σ∗t = ψ
σ∗t+1
t+1 .

3.4.3 Count-Duration Variables

Count-duration variables allow any structure for p(v1:T |σ1:T ) within
a segment and therefore, unlike count variables, also a distribution
p(v1:T |σ1:T ) that cannot be efficiently computed as

∏
t p(vt|σt, v1:t−1).

For models that contain only σ1:T and v1:T and with across-segment
independence, this translates into non-Markovian dependence between
the observations. This type of models is represented by the belief net-
work shown in Figure 3.5(a), where across-segment independence is
enforced with a link from ct and dt to vt (explicitly represented in Fig-
ure 3.5(b)) and non-Markovian dependence is indicated by undirected
links.

Non-Markovian dependence between the observations within a seg-
ment is possible as, whilst time-recursive inference cannot be performed
in this complex scenario, knowledge about segment beginning and seg-
ment end enables segment-recursive inference, namely in terms of count
variables that take value 1 and involving the whole segment-emission
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· · · ct−1 ct ct+1

dt−1 dt dt+1

st−1 st st+1

· · ·

vt−1 vt vt+1

(a)

· · · ct−1 ct ct+1

dt−1 dt dt+1

st−1 st st+1

· · ·

vt−1 vt vt+1

dt+1 = 3, ct+1 = 2

(b)

Figure 3.5: (a): MSM in which the segment-duration distribution is explicitly mod-
elled using decreasing count variables c1:T and duration variables d1:T . The undi-
rected links between the observations indicate non-Markovian dependence. Across-
segment independence is enforced with a link from ct and dt to vt. (b): Explicit
representation of across-segment independence. The values dt+1 = 3, ct+1 = 2
indicate that the segment passing through time-step t + 1 starts at time-step
t+ 1− dt+1 + ct+1 = t.

distribution est,dtt = p(vt−dt+1:t|st, dt, ct = 1) = p(vt−dt+1:t|σt−dt+1 =
(st, dt, dt), . . . , σt−1 = (st, dt, 2), st, dt, ct = 1).

The segmental recursions that we describe coincide with the stan-
dard recursions of hidden semi-Markov/segment models [Ferguson,
1980, Rabiner, 1989, Ostendorf et al., 1996, Murphy, 2002, Yu, 2010],
which are obtained by defining only duration variables and by per-
forming the computations at the occurrence of the events segment end
and segment beginning. As discussed above and in Murphy [2002], this
approach can be more easily explained by defining also variables c1:T
such that, e.g., ct = 1 at the end of the segment and ct = 2 otherwise,
and by performing inference in terms of time-steps for which c1:T take
value 1. These variables can be seen as collapsed count variables that
encode information about whether (rather than where) the segment is
ending, such that information about segment beginning and segment
end is available only at the end of the segment. In this encoding σ1:T do
not form a first-order Markov chain. Indeed, e.g., ct depends on dt, ct−1
if ct−1 = 1, whilst it depends on ct−dt+1:t−1 if ct−1 = 2.

Encoding information about segment beginning and segment end
anywhere within the segment, whilst not having any computational
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disadvantage, has the advantage of making the derivation of poste-
rior distributions more immediate. This is particularly useful in models
with additional unobserved variables related by first-order Markovian
dependence, as we will see in §3.5.

In the following sections we describe segmental inference and learn-
ing assuming across-segment independence.

Segmental parallel filtering-smoothing

Using the notation σ1
t = (st, dt, ct = 1), the filtered distribution ασ

1
t
t =

p(σ1
t |v1:t) can be obtained by normalizing ᾱσ

1
t
t = p(σ1

t , v1:t), where ᾱ
σ1
t
t

can be computed as7

ᾱ
σ1
t
t =

∑
σt−dt:t−1

p(vt−dt+1:t|���σt−dt , σt−dt+1:t−1, σ
1
t ,����v1:t−dt)

× p(σt−dt+1:t−1, σ
1
t |σt−dt ,����v1:t−dt)p(σt−dt , v1:t−dt)

= est,dtt

∑
st−dt ,dt−dt

p(st−dt+1 =st|st−dt , ct−dt =1)

× p(dt−dt+1 =dt|dt−dt , ct−dt =1)p(σ1
t−dt , v1:t−dt)

= est,dtt ρstdt
∑
st−dt

πstst−dt

∑
dt−dt

ᾱ
σ1
t−dt
t−dt . (3.5)

Naive computation of this recursion has cost O(TS2Ed2
max), where

E is the cost of computing est,dtt . However, with pre-computation of∑
dt−dt

ᾱ
σ1
t−dt
t−dt , which does not depend on st and dt, and with pre-

computation of
∑
st−dt

πstst−dt
∑
dt−dt

ᾱ
σ1
t−dt
t−dt , which does not depend on

dt, the cost reduces to O(TS(S + Edmax))8.
In the case of Markovian dependence between the observations, if

ᾱσtt for ct > 1 is of interest, a time-recursive routine on the line of the
one described in Appendix A.5 for ασtt can be used.

7For t = 1, . . . , dmax, ᾱ
σ1

t
t = p(v1:t|σ1

t )π̃st ρ̃stdt
˜̃ρdtt if dt ≥ t.

8In the case of Markovian dependence between the observations, E is the cost of
computing p(vt|σ1

t , vt−dt+1:t−1), as est,dt
t can be computed recursively, i.e. est,dt

t =
p(vt|σ1

t , vt−dt+1:t−1)est,dt−1
t−1 .
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The smoothed distribution γσ
1
t
t = p(σ1

t |v1:T ) can be obtained as9 γσ
1
t
t ∝

p(vt+1:T |st,��dt, ct = 1,��v1:t)p(σ1
t , v1:t) = βst,1t ᾱ

σ1
t
t , where, with the nota-

tion σj,k,1t+k = (st+k = j, dt+k = k, ct+k = 1), βst,1t = p(vt+1:T |st, ct = 1)
can be computed as10

βst,1t =
∑
j,k

p(vt+1:T |σj,k,1t+k ,��
���st, ct=1)p(σj,k,1t+k |st, ct=1)

=
∑
j,k

p(vt+1:t+k|σj,k,1t+k ,(((
((vt+k+1:T )p(vt+k+1:T |σj,k,1t+k )πjstρjk

=
∑
j

πjst
∑
k

p(vt+1:t+k|σj,k,1t+k )βj,1t+kρjk. (3.6)

With pre-computation of
∑
k p(vt+1:t+k|σj,k,1t+k )βj,1t+kρjk, this recursion

has cost O(TS(S + dmax)).
Notice that recursions (3.5) and (3.6) correspond to the standard re-

cursions of hidden semi-Markov/segment models using collapsed count
variables [Ferguson, 1980, Rabiner, 1989, Ostendorf et al., 1996, Mur-
phy, 2002, Yu, 2010].

The smoothed distribution γσtt for ct > 1 can be obtained as γσtt =
γst,dt,1t+ct−1. Indeed, in such a case,

γσtt =
∑
σt+1

p(σt|σt+1, v1:t,����vt+1:T )p(σt+1|v1:T )

= γst,dt,ct−1
t+1 = γst,dt,ct−2

t+2 = · · · = γst,dt,1t+ct−1, (3.7)

where we have used p(σt|σt+1 = (st, dt, ct − 1), v1:t) = 1.
From Equation (3.7) we can immediately derive p(st, ct|v1:T ) and

p(st|v1:T ) as

p(st, ct|v1:T ) =
dmax∑

dt=max(dmin,ct)
γσtt =

∑
dt

γst,dt,1t+ct−1 ∝ β
st,1
t+ct−1

∑
dt

ᾱst,dt,1t+ct−1,

9The normalization term p(v1:T ) can be computed by summing the rhs of Equa-
tion (3.5) over st for a time-step t, or as

∑
sT ,dT

ᾱ
σ1

T
T if the constraint cT = 1 is

imposed or if inference is conditioned on this event.
10For t ≥ T , βst,1

t = 1. Setting βst,1
t = 0 for t > T corresponds to conditioning

inference on the event cT = 1.



36 Explicit-Duration Modelling

and

p(st|v1:T ) =
dmax∑
ct=1

p(st, ct|v1:T ) ∝
t+dmax−1∑

τ=t
βst,1τ

dmax∑
dt=max(dmin,τ−t+1)

ᾱst,dt,1τ . (3.8)

In the standard approach that uses collapsed count variables, p(st|v1:T )
is derived by observing that the set of all segments passing through
time-step t needs to be considered, and that this set can be obtained
by subtracting all segments ending before time-step t from all segments
starting at time-step t or before (see Appendix A.5). In Equation (3.8),
p(st|v1:T ) is computed by summing over all segments passing through
time-step t, which are obtained as all segments that start at time-step
t or before and end at time-step t or after. However, the equation was
derived by use of equivalence (3.7) rather than by use of this obser-
vation. Therefore, uncollapsed count variables enable more automatic
derivations of posterior distributions of interest.

Segmental sequential filtering-smoothing

The filtered distribution α
σ1
t
t = p(σ1

t |v1:t) can be obtained as ασ
1
t
t =

p(σ1
t ,vt−dt+1:t|v1:t−dt )

p(vt−dt+1:t|v1:t−dt )
, where the numerator can be computed as in recur-

sion (3.5).
The smoothed distribution γσ

1
t
t = p(σ1

t |v1:T ) can be computed as

γ
σ1
t
t =

∑
st+1,dt+1

πst+1st���
��ρst+1dt+1α

σ1
t
t∑

s̃t,d̃t
πst+1s̃t��

���ρst+1dt+1α
σ̃1
t
t

γ
st+1,dt+1,dt+1
t+1

= α
σ1
t
t

∑
st+1

πst+1st∑
s̃t πst+1s̃t

∑
d̃t
α
σ̃1
t
t

∑
dt+1

γ
st+1,dt+1,1
t+dt+1

. (3.9)

With pre-summation over k and j, the cost of this recursion is
O(TS(S + dmax)).

Segmental extended Viterbi

With the definition ξ
σ1
t
t = maxs1:t−1,d1:t−1 p(s1:t−1, d1:t−1, σ

1
t , v1:t), the

most likely sequence σ∗1:T = arg maxσ1:T p(σ1:T |v1:T ) can be computed
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as follows (assuming c∗T = 1):11

for t = 1, . . . , T

ξ
σ1
t
t = p(vt−dt+1:t|σ1

t )ρstdt max
st−dt

πstst−dt max
dt−dt

ξ
σ1
t−dt
t−dt

ψst,dtt = arg max
st−dt ,dt−dt

πstst−dt ξ
σ1
t−dt
t−dt

σ∗T = (arg max
sT ,dT

ξ
σ1
T
T , 1)

s∗T−d∗T+1:T−1 = s∗T , d
∗
T−d∗T+1:T−1 = d∗T , c

∗
T−d∗T+1:T−1 = d∗T , . . . , 2

t = T−d∗T
while t>1

σ∗t = (ψs
∗
t+1,d

∗
t+1

t+1 , 1)
s∗t−d∗t+1:t−1 = s∗t , d

∗
t−d∗t+1:t−1 = d∗t , c

∗
t−d∗t+1:t−1 = d∗t , . . . , 2

t = t− d∗t .

Segmental learning

In this section we show how count-duration variables enable to derive
EM updates in a straightforward way. The relation with the standard
approach that uses collapsed count variables is given in Appendix A.5.

The expectation of the complete data log-likelihood can be written
as

L =
T∑
t=1

∑
dt

γ
σ1
t
t log p(vt−dt+1:t|σ1

t )

+
∑
s1

p(s1|v1:T ) log π̃s1 +
T∑
t=2

∑
st−1,st

p(st−1, ct−1 =1, st|v1:T ) log πstst−1

+
∑
s1,d1

p(s1, d1|v1:T ) log ρ̃s1d1 +
T∑
t=2

∑
st,dt

p(ct−1 =1, st, dt|v1:T ) log ρstdt ,

11For t = 1, . . . , dmax, ξ
σ1

t
t = ᾱ

σ1
t
t and ψst,dt

t = ∅ if dt ≥ t .
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· · · · · ·st−1 st st+1

ht−1 ht ht+1

vt−1 vt vt+1

Figure 3.6: Belief network representation of the switching linear Gaussian state-
space model.

giving update for ρstdt

ρstdt =
∑
t p(ct−1 =1, st, dt|v1:T )∑

t

∑
d̃t
p(ct−1 =1, st, d̃t|v1:T )

=
∑
t γ

st,dt,1
t+dt−1∑

t

∑
d̃t
γst,d̃t,1
t+d̃t−1

, (3.10)

as

p(ct−1 =1, st, dt|v1:T ) =
��

���
��

���
���

�∑
st−1,dt−1 πstst−1ρstdtα

σ1
t−1
t−1∑

s̃t−1,d̃t−1
πsts̃t−1ρstdtα

σ̃1
t−1
t−1

γst,dt,dtt = γst,dt,1t+dt−1,

and update for πstst−1

πstst−1 =
∑
t p(st−1, ct−1 =1, st|v1:T )∑

t

∑
s̃t p(st−1, ct−1 =1, s̃t|v1:T ) , (3.11)

where

p(st−1, ct−1 =1, st|v1:T ) =
πstst−1

∑
dt−1 α

σ1
t−1
t−1∑

s̃t−1 πsts̃t−1

∑
d̃t−1

α
σ̃1
t−1
t−1

∑
dt

γst,dt,1t+dt−1. (3.12)

3.5 Explicit-Duration SLGSSM

In §3.4 we have seen that the cost of inference in explicit-duration
MSMs of type p(σ1:T , v1:T ) does not depend on the type of explicit-
duration variables used. This is not the case in models that contain
additional unobserved variables h1:T related by Markovian dependence,
for which inference is more complex.
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In this section we consider the most popular of such models, namely
the switching linear Gaussian state-space model (SLGSSM), also called
switching linear dynamical system [Barber, 2006].

In the SLGSSM, vt ∈ RV , ht ∈ RH , and the joint distribution of all
variables p(s1:T , h1:T , v1:T ) factorizes as

p(v1|h1, s1)p(h1|s1)p(s1)
T∏
t=2

p(vt|ht, st)p(ht|ht−1, st)p(st|st−1),

giving the belief network representation shown in Figure 3.6. The fac-
tors are defined as

p(s1) = π̃s1 , p(st|st−1) = πstst−1 ,

p(h1|s1) = N (h1;µs1 ,Σs1), p(ht|ht−1, st) = N (ht;Astht−1,Σst
H),

p(vt|ht, st) = N (vt;Bstht,Σst
V ),

where µs1 is a H-dimensional vector, Σs1 , Ast and Σst
H are H × H-

dimensional matrices, Bst is a V ×H-dimensional matrix, and Σst
V is a

V × V -dimensional matrix. The model can be equivalently defined by
the following linear equations:

ht = Astht−1 + ηht , η
h
t ∼ N (ηht ; 0,Σst

H), h1 ∼ N (h1;µst ,Σst), (3.13)
vt = Bstht + ηvt , η

v
t ∼ N (ηvt ; 0,Σst

V ). (3.14)

Performing inference in the SLGSSM requires approximations since,
e.g., p(ht|v1:t) is a Gaussian mixture with St components12. In the
expectation-correction (EC) approach of Barber [2006], the filtered
distribution p(ht, st|v1:t) is first computed by forming separate recur-
sions for p(ht|st, v1:t) and p(st|v1:t), and then used to compute the
smoothed distribution p(ht, st|v1:T ) by forming separate recursions for
p(ht|st, v1:T ) and p(st|v1:T ). The recursions are similar to the sequential
filtering-smoothing recursions used in §2.2.1. The explosion of mixture
components with time is addressed by collapsing, at each time-step, the
obtained Gaussian mixture to a Gaussian mixture with a lower num-
ber of components [Alspach and Sorenson, 1972]. In addition to Gaus-
sian collapsing, EC introduces one approximation in the recursion for

12This explosion of mixture components with time can be understood by
noticing that p(ht|v1:t) is given by

∑
s1:T

p(ht|s1:t,���st+1:T , v1:t)p(s1:T |v1:t) =∑
s1:t

p(ht|s1:t, v1:t)p(s1:t|v1:t) and that p(ht|s1:t, v1:t) is Gaussian.
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(a) (b)

Figure 3.7: (a): Noisy measurements of the positions of a two-wheeled robot moving
in the two-dimensional space generated from model (A.4). (b): Actual positions
(dashed line) and estimated positions (continuous line) by a SLGSSM (means of
p(ht|v1:T )). The initial position is indicated with a star.

p(ht|st, v1:T ), due to lack of knowledge about the regime at the previous
time-step, and one approximation in the recursion for p(st|v1:T ). The re-
sulting routines for p(ht|st, v1:t) and p(ht|st, v1:T ) resemble the standard
predictor-corrector filtering routines and Rauch-Tung-Striebel smooth-
ing routines of the linear Gaussian state-space model (LGSSM) [Rauch
et al., 1965, Grewal and Andrews, 1993, Chiappa, 2006].

The SLGSSM enables sophisticated modelling and estimation of
hidden dynamics underlying noisy observations [Pavlovic et al., 2001,
Zoeter, 2005, Mesot and Barber, 2007, Chiappa, 2008, Quinn et al.,
2009]. It can can be used, e.g., to solve the robot localization problem
discussed in Chapter 1, namely to infer the positions of a two-wheeled
robot moving in the two-dimensional space plotted in Figure 3.7(b)
with a dashed line from the noisy measurements plotted in Figure
3.7(a). As explained in detail in Appendix A.4, the hidden dynamics
and observation process can be formulated as a SLGSSM with nonlin-
ear hidden dynamics. The means of p(ht|v1:T ), computed by combining
EC with an unscented approximation [Särkkä, 2008], give reasonably
accurate estimates of the positions, as shown in Figure 3.7(b) with a



3.5. Explicit-Duration SLGSSM 41

continuous line13.
In the SLGSSM, all three approaches to explicit-duration mod-

elling can be used (as the Markovian structure of h1:T enables re-
cursive computation of p(vt|σt, v1:t−1)) and allow p(v1:T |σ1:T ) to fac-
torize across segments. Following closely EC, we describe a sequential
filtering-smoothing approach that allows to generalize the results to
similar models with unobserved variables related by first-order Marko-
vian dependence. In this approach, the filtered distribution p(ht, σt|v1:t)
is first computed by forming separate recursions for α̂σtt = p(ht|σt, v1:t)
and ασtt = p(σt|v1:t), and then used to compute the smoothed distri-
bution p(ht, σt|v1:T ) by forming separate recursions γ̂σtt = p(ht|σt, v1:T )
and γσtt = p(σt|v1:T ).

To gain some intuition about the differences between the three ap-
proaches, we can observe that inference on h1:T needs to consider all
possible segmentations, i.e. all possible partitioning of the time se-
ries into segments and, for each partitioning, all possible combinations
of regimes.

In the across-segment-independence case, inference on h1:T given
a segmentation reduces to inference in a separate LGSSM for each
segment and regime. Since the set of unique segments generated by
all possible segmentations is {vt:t+dt−1,∀t,∀dt}, only LGSSM filtering-
smoothing on segment vt:t+dt−1 for each t, st and dt is required. Fur-
thermore, as filtering can be shared between all segments that start
at the same time-step and are generated from the same regime, only
LGSSM filtering on segment vt:t+dmax−1 for each t and st is required.
Therefore, the computational cost of inference on h1:T for all possible
segmentations is O(TSdmax) for filtering and O(TSd2

max) for smooth-
ing. Computing p(ht|st, v1:t) requires to sum over all possible starts of
the segment passing through time-step t, giving rise to a Gaussian mix-
ture with dmax components. This means that, regardless of the explicit-
duration encoding used, p(ht|st, v1:t) cannot be simpler than a Gaussian
mixture with dmax components. Similarly, computing p(ht|st, v1:T ) re-

13The hidden dynamics fst (see Appendix A.4), µs1 , Σs1 , Σst
H , and Σst

V were
assumed to be known, and maximum likelihood values of π̃ and π were computed
using the correct regimes.
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quires to sum over all possible starts and ends of the segment passing
through time-step t, giving rise to a Gaussian mixture with number
of components (of order) d2

max. Therefore, p(ht|st, v1:T ) cannot be sim-
pler than a Gaussian mixture with number of components (of order)
d2

max. If knowledge about segment beginning is explicitly encoded in
the explicit-duration variables, α̂σtt is a Gaussian distribution, and the
mixture in p(ht|st, v1:t) arises from summing over the explicit-duration
variables. If knowledge about segment beginning is not explicitly en-
coded in the explicit-duration variables, α̂σtt is a Gaussian mixture with
(maximally, as segment end is encoded in this case) dmax components.
Similarly, γ̂σtt is a Gaussian distribution if knowledge about both seg-
ment beginning and segment end is explicitly encoded in the explicit-
duration variables, and a Gaussian mixture with maximally dmax com-
ponents otherwise.

Decreasing count variables encode information about segment end.
The recursion for α̂σtt (recursion (3.20)) produces a Gaussian mixture
with maximally dmax components accounting for all possible segment
starts, and therefore has computational cost O(TSd2

max). The cost
can be reduced to O(TSdmax) with Gaussian collapsing. The recur-
sion for γ̂σtt (recursion (3.24)) does not increase the number of com-
ponents, as segment end is known. Without Gaussian collapsing of
α̂σtt , the cost of the recursion is therefore O(TSd2

max). With Gaus-
sian collapsing of α̂σtt , the cost is reduced to O(TSdmax); however,
as knowledge about segment beginning is lost, the EC approximation
p(ht+1|st, ct > 1, σt+1, v1:T ) ≈ γ̂σt+1

t+1 in Equation (3.22) is required.
Increasing count variables encode information about segment be-

ginning. The recursion for α̂σtt (recursion (3.26)) produces a Gaussian
distribution, and therefore has cost O(TSdmax). This recursion essen-
tially performs LGSSM filtering on segment vt:t+dmax−1 for each t and
st. The recursion for γ̂σtt (recursion (3.28)) produces a Gaussian mix-
ture with maximally dmax components, which accounts for all possible
segment ends, and therefore has cost O(TSd2

max). The cost can be re-
duced to O(TSdmax) with Gaussian collapsing.

Count-duration variables encode information about both segment
beginning and segment end. The estimation of α̂σtt and γ̂σtt can be
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α̂σtt ασtt

GM with maximally dmax components: O(TSd2
max) O(TS2dmax)

Gaussian collapsing: O(TSdmax)

γ̂σtt γσtt

GM with maximally dmax components: O(TSd2
max)

Gaussian collapsing of ασtt : O(TSdmax) O(TS2dmax)

p(ht+1|st, ct > 1, σt+1, v1:T ) ≈ γ̂σt+1
t+1
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r. α̂σtt ασtt

Gaussian: O(TSdmax) O(TS2dmax)

γ̂σtt γσtt

GM with maximally dmax components: O(TSd2
max) O(TS2dmax)

Gaussian collapsing: O(TSdmax)

C
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Va

r. α̂σtt ασtt

Gaussian: O(TSdmax) O(TS2dmax)

γ̂σtt γσtt

Gaussian: O(TSd2
max) O(TS2dmax)

Table 3.1: Characteristics of the different encodings for the explicit-duration
SLGSSM with across-segment independence. GM indicates Gaussian mixture.

recast into filtering and smoothing in a LGSSM, and therefore has cost
O(TSdmax) and O(TSd2

max) respectively. Alternatively, the estimation
can be achieved with time-recursive routines that produce Gaussian
distributions and have the same cost (recursions (A.6) and (A.8)). The
cost O(TSdmax) rather than O(TSd2

max) in the recursion for α̂σtt is
achieved by taking care of redundancies.

In all three approaches, the estimation of ασtt and γσtt has cost
O(TS2dmax)14. The computation of ασtt requires filtering on h1:T and,

14For simplicity of exposition, we do not consider the possibility to reduce the
cost to O(TS(S + dmax)) in this model.
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if decreasing count variables are used, the computation of γσtt requires
smoothing on h1:T .

In summary, increasing count variables and count-duration vari-
ables have the advantage over decreasing count variables of requir-
ing only filtering on h1:T to perform segmentation. Without Gaus-
sian collapsing, increasing count variables and count-duration vari-
ables give the same computational cost. They are advantageous over
decreasing count variables as filtering on h1:T has lower cost and as
smoothing on h1:T is simpler. The count-duration-variable approach
is more intuitive than the increasing-count-variable approach. How-
ever, increasing count variables do not require taking care of redun-
dancies. With Gaussian collapsing, which can be performed in filter-
ing with decreasing count variables and in smoothing with increasing
count variables, count variables give that same computational cost,
which is lower in smoothing on h1:T than with count-duration vari-
ables. However, decreasing count variables require the EC approxima-
tion p(ht+1|st, ct > 1, σt+1, v1:T ) ≈ γ̂

σt+1
t+1 in Equation (3.22). In similar

models in which h1:T are discrete, similar conclusions to the Gaussian
collapsing case can be made. The characteristics are summarized in
Table 3.1.

In the across-segment-dependence case, explicit-duration modelling
increases the computational complexity with respect to the standard
SLGSSM, and therefore Gaussian collapsing is required. If time-step
t corresponds to the beginning of a segment, ct−1 must have value 1
in the decreasing-count-variable approach and can take any value in
the increasing-count-variable approach. This means that the recursion
for α̂σtt using decreasing count variables (recursion (3.15)) produces a
Gaussian mixture with less components than the recursion for α̂σtt us-
ing increasing count variables (recursion (3.25)). The reverse happens
in the recursion for γ̂σtt (recursions (3.21) and (3.27)). Count-duration
variables (requiring time-recursive inference) give rise to more complex
Gaussian mixtures than count variables. Gaussian collapsing reduces
the cost of the recursions for α̂σtt , and γ̂σtt to O(TS2dmax) in the count-
variable approaches and to O(TS2d2

max) in the count-duration-variable
approach. The computation of ασtt and γσtt has cost O(TS2dmax) in all
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approaches. Unlike decreasing count variables, increasing count vari-
ables and count-duration variables require the EC approximations only
for ct = 1. In similar models with discrete unobserved variables related
by first-order Markovian dependence, similar conclusions to the Gaus-
sian collapsing case can be made.

Therefore, the increasing count variable approach is overall prefer-
able in both the across-segment-independence and across-segment-
dependence cases.

In the following sections we describe the three approaches in more
detail.

The explicit-duration SLGSSM is also discussed in Oh et al. [2008]
using increasing count variables and in Bracegirdle and Barber [2011]
and Bracegirdle [2013] in the context of reset models (see §3.6). Brace-
girdle and Barber [2011] and Bracegirdle [2013] present a recursion
for α̂σtt using increasing count variables that is equivalent to recursion
(3.26), and a recursion for γ̂σtt using increasing-decreasing count vari-
ables with cost O(TSd2

max). Increasing-decreasing count variables pro-
vide the same information as count-duration variables but give rise to
more convoluted recursions. The computation of the smoothed distribu-
tions in the increasing-decreasing-count-variable representation using
filtered distributions computed in the increasing-count-variable repre-
sentation is possible as across-segment-dependence is cut.

3.5.1 Decreasing Count Variables

The explicit-duration SLGSSM using decreasing count variables has
belief network representation given in Figure 3.8(a). Across-segment
independence can be enforced by adding a link from ct to ht+1, as in
Figure 3.8(b), which has the effect of removing the link from ht to ht+1
if ct = 1, as explicitly represented in Figure 3.8(c). More specifically,
dependence cut is defined as

p(ht|ht−1, ct−1, st) =

p(ht|ct−1, st) = N (ht;µst ,Σst) if ct−1 =1
N (ht;Astht−1,Σst

H) if ct−1>1.
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ct−1 ct ct+1

st−1 st st+1

ht−1 ht ht+1

vt−1 vt vt+1

(a)

ct−1 ct ct+1

st−1 st st+1

ht−1 ht ht+1

vt−1 vt vt+1

(b)

ct−1 ct ct+1

st−1 st st+1

ht−1 ht ht+1

vt−1 vt vt+1

ct = 1

(c)

Figure 3.8: (a): Explicit-duration SLGSSM using decreasing count variables. (b):
Across-segment independence is enforced with a link from ct to ht+1, as explicitly
represented in (c).

Filtering

To compute the filtered distribution p(ht, σt|v1:t), we form separate
recursions for ασtt = p(σt|v1:t) and α̂σtt = p(ht|σt, v1:t).

The recursion for ασtt is given by15

ασtt =
∑
σt−1 p(σt−1:t, vt|v1:t−1)∑
σ̃t−1:t p(σ̃t−1:t, vt|v1:t−1)

∝
∑
σt−1

p(vt|σt−1, st,��ct, v1:t−1)p(σt|σt−1,���v1:t−1)p(σt−1|v1:t−1)

=
{
δct<dmax
st−1=st
ct−1=ct+1

+ δct≥dmin
ct−1=1

ρσt
∑
st−1

πstst−1

}
e
σt−1,st
t α

σt−1
t−1 ,

where (see Equation (3.17) below) eσt−1,st
t = p(vt|σt−1, st, v1:t−1) =

N (vt;Bst ĥ
t−1,σt−1,st
t , BstP

t−1,σt−1,st
t (Bst)T + Σst

V ), with the symbol T

denoting the transpose operator. Notice that vt��⊥⊥ct−1|{st−1:t, v1:t−1}
as the path ct−1, ct−2, st−2, ht−2:t, vt in Figure 3.8(a) is not blocked.
This recursion has computational cost O(TS2dmax).

15Notice the similarity with recursion (3.1).
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The recursion for α̂σtt is given by

α̂σtt =
∑
σt−1

p(ht|σt−1, st,��ct, v1:t)p(σt−1|σt, v1:t) (3.15)

=
∑
σt−1

p(ht|σt−1, st, v1:t)
p(σt−1:t, vt|v1:t−1)∑

σ̃t−1 p(σ̃t−1, σt, vt|v1:t−1)

= 1
nσtt

{
δct<dmax
st−1=st
ct−1=ct+1

+ δct≥dmin
ct−1=1

ρσt
∑
st−1

πstst−1

}
e
σt−1,st
t α

σt−1
t−1 p(ht|σt−1, st, v1:t),

with nσtt =
∑
σ̃t−1 p(vt, σ̃t−1, σt|v1:t−1) and16

p(ht|σt−1, st, v1:t) = p(vt|ht,���σt−1, st,���v1:t−1)p(ht|σt−1, st, v1:t−1)
p(vt|σt−1, st, v1:t−1)

=
p(vt|ht, st)

∫
ht−1

p(ht|ht−1,���σt−1, st,���v1:t−1)p(ht−1|σt−1,��st, v1:t−1)
p(vt|σt−1, st, v1:t−1)

=
p(vt|ht, st)

∫
ht−1

p(ht|ht−1, st)α̂σt−1
t−1

p(vt|σt−1, st, v1:t−1) .

If we assume α̂σt−1
t−1 to be Gaussian with mean ĥ

t−1,σt−1
t−1

17 and covari-
ance P t−1,σt−1

t−1 , rather than using the equation above, we can obtain
p(ht|σt−1, st, v1:t) more directly from the rules of linear transforma-
tions of Gaussian variables. More specifically, from Equation (3.13) we
deduce that p(ht|σt−1, st, v1:t−1) is Gaussian with mean and covariance
given by

ĥ
t−1,σt−1,st
t = 〈ht〉p(ht|σt−1,st,v1:t−1) = Ast ĥ

t−1,σt−1
t−1 ,

P
t−1,σt−1,st
t = 〈(ht − ĥt−1,σt−1,st

t )(ht − ĥt−1,σt−1,st
t )T〉p(ht|σt−1,st,v1:t−1)

= AstP
t−1,σt−1
t−1 (Ast)T + Σst

H . (3.16)

16The notation
∫
x
indicates integration over the entire range of x.

17In this notation the lower index t−1 refers to ht−1, whilst the upper index t−1
refers to conditioning on v1:t−1.
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Furthermore, from Equation (3.14) we deduce

〈vt〉p(vt|σt−1,st,v1:t−1) = Bst ĥ
t−1,σt−1,st
t , (3.17)

〈(vt − 〈vt〉)(vt − 〈vt〉)T〉p(vt|σt−1,st,v1:t−1) = BstP
t−1,σt−1,st
t (Bst)T + Σst

V ,

〈(vt − 〈vt〉)(ht − ĥt−1,σt−1,st
t )T〉p(vt,ht|σt−1,st,v1:t−1) = BstP

t−1,σt−1,st
t .

Finally, by using the formula of Gaussian conditioning, we deduce that
p(ht|σt−1, st, v1:t) is Gaussian with mean and covariance given by

ĥ
t,σt−1,st
t = ĥ

t−1,σt−1,st
t +K(vt−Bst ĥ

t−1,σt−1,st
t ),

P
t,σt−1,st
t = (I−KBst)P t−1,σt−1,st

t , (3.18)

where K = P
t−1,σt−1,st
t (Bst)T(BstP

t−1,σt−1,st
t (Bst)T + Σst

V )−1 and I is
the identity matrix. More generally, if α̂σt−1

t−1 is a Gaussian mixture,
p(ht|σt−1, st, v1:t) is also a Gaussian mixture with the same number of
components.

At time-step t = 1, α̂σtt is Gaussian with mean and covariance

ĥt,stt = µst+K1(vt−Bstµst), P t,stt = (I−K1B
st)Σst , (3.19)

where K1 = Σst(Bst)T(BstΣst(Bst)T + Σst
V )−1.

Notice that, if we remove dependence on σt−1, st, Equations (3.16),
(3.18) and (3.19) become the standard predictor-corrector routines of
the LGSSM (Grewal and Andrews [1993], Chiappa [2006]).

As α̂σ1
1 is Gaussian, from the reasoning above and recursion (3.15)

we deduce that α̂σ2
2 is a Gaussian mixture with S components and,

more generally, that at each time-step the number of components is
multiplied by S, so that α̂σtt is a Gaussian mixture with St−1 com-
ponents. Therefore, the recursion for α̂σtt has cost O(TStdmax). The
collapsing of α̂σtt to a Gaussian distribution by moment matching, i.e.

ĥt,σtt = 1
nσtt

{
δct<dmax
st−1=st
ct−1=ct+1

+ δct≥dmin
ct−1=1

ρσt
∑
st−1

πstst−1

}
e
σt−1,st
t α

σt−1
t−1 ĥ

t,σt−1,st
t ,

P t,σtt = 1
nσtt

{
δct<dmax
st−1=st
ct−1=ct+1

+ δct≥dmin
ct−1=1

ρσt
∑
st−1

πstst−1

}
e
σt−1,st
t α

σt−1
t−1

×
(
P
t,σt−1,st
t + ĥ

t,σt−1,st
t (ĥt,σt−1,st

t )T)− ĥt,σtt (ĥt,σtt )T,
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reduces the cost to O(TS2dmax).
In similar models in which h1:T are discrete, the recursion for α̂σtt

has cost O(TS2dmax).

Across-segment independence. If across-segment independence is
enforced, the recursion for ασtt becomes

ασtt ∝ δct<dmaxe
st,ct+1,st
t αst,ct+1

t−1

+ δct≥dminρσt
∑
st−1

p(vt|���st−1, ct−1 =1, st,���v1:t−1)πstst−1α
st−1,1
t−1 ,

with p(vt|ct−1 = 1, st) = N (vt;Bstµst , BstΣst(Bst)T +Σst
V ). This recur-

sion has cost O(TS2dmax).
The recursion for α̂σtt becomes

α̂σtt = δct<dmax
st−1=st
ct−1=ct+1

p(ht|σt−1, st, v1:t)p(σt−1|σt, v1:t)

+ δct≥dmin
ct−1=1

�
�
�

∑
st−1

p(ht|���st−1, ct−1, st,���v1:t−1, vt)p(���st−1, ct−1|σt, v1:t), (3.20)

where p(ht|ct−1 = 1, st, vt) is Gaussian with mean and covariance as in
Equation (3.19). Notice that p(st−1, ct−1 = 1|σt, v1:t) 6= p(st−1, ct−1 =
1|σt, v1:t−1) as the path ct−1, ht, vt in Figure 3.9(b) is not blocked.

As α̂st,dmax
t is Gaussian, we deduce that α̂st,dmax−1

t is a Gaussian
mixture with 2 components and, more generally, that α̂σtt is a Gaus-
sian mixture with dmax − ct + 1 components, where each component
corresponds to a different possible start of the segment. Therefore, the
recursion for α̂σtt has cost O(TSd2

max). Gaussian collapsing is not nec-
essarily required, but can be used to reduce the cost to O(TSdmax).

In similar models in which h1:T are discrete, the recursion for α̂σtt
has cost O(TSdmax).

Smoothing

As for filtering, we compute the smoothed distribution p(ht, σt|v1:T )
with separate recursions for γσtt = p(σt|v1:T ) and γ̂σtt = p(ht|σt, v1:T ).
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The recursion for γσtt is given by

γσtt =
∑
σt+1

p(σt|σt+1, v1:T )p(σt+1|v1:T )

=
∑
σt+1

γ
σt+1
t+1

∫
ht+1

p(σt|ht+1, σt+1, v1:t,����vt+1:T )γ̂σt+1
t+1 ,

where the integral over ht+1 cannot be estimated in closed form. If we
assume γ̂σt+1

t+1 to be Gaussian with mean ĥT,σt+1
t+1 and covariance P T,σt+1

t+1 ,
on the line of EC [Barber, 2006], we can approximate p(σt|σt+1, v1:T )
as

p(σt|σt+1, v1:T ) ≈ p(σt|ht+1 = ĥ
T,σt+1
t+1 , σt+1, v1:t)

=
p(ht+1 = ĥ

T,σt+1
t+1 |σt, st+1,���ct+1, v1:t)p(σt+1|σt,��v1:t)p(σt|v1:t)∑

σ̃t p(ht+1 = ĥ
T,σt+1
t+1 |σ̃t, st+1,���ct+1|v1:t)p(σt+1|σ̃t,��v1:t)p(σ̃t|v1:t)

∝
{
δct>1
st+1=st
ct+1=ct−1

+ δct=1ρσt+1πst+1st

}
ασtt p(ht+1 = ĥ

T,σt+1
t+1 |σt, st+1, v1:t).

Therefore, the recursion for γσtt has cost O(TS2dmax).
The recursion for γ̂σtt is given by

γ̂σtt =
∑
σt+1

p(ht|σt:t+1, v1:T )p(σt+1|σt, v1:T ) (3.21)

=
{
δct>1
st+1=st
ct+1=ct−1

+ δct=1
∑
σt+1

p(σt|σt+1, v1:T )γσt+1
t+1∑

σ̃t+1
p(σt|σ̃t+1, v1:T )γσ̃t+1

t+1

}
p(ht|σt:t+1, v1:T ),

where we have used p(σt+1 = (st, ct − 1)|st, ct > 1) = 1. Notice that
ht��⊥⊥ct+1 | {σt, st+1, v1:T } as the path ct+1, st+2, vt+2, ht+2, ht+1, ht in
Figure 3.8(a) is not blocked (similarly, ht��⊥⊥st+1 | {σt, ct+1, v1:T }). On
the line of EC [Barber, 2006], p(ht|σt:t+1, v1:T ) is approximated as

p(ht|σt:t+1, v1:T ) =
∫
ht+1

p(ht|ht+1, σt, st+1,���ct+1, v1:t,����vt+1:T )

× p(ht+1|σt:t+1, v1:T )

≈
∫
ht+1
p(ht|ht+1, σt, st+1, v1:t)γ̂σt+1

t+1 . (3.22)
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Notice that ht��⊥⊥st+1 | {ht+1, σt, ct+1, v1:T }, as the path st+1, ht+1, ht in
Figure 3.8(a) is not blocked.

Assuming Gaussian collapsing of α̂σtt , from Equation (3.13) we de-
duce that p(ht:t+1|σt, st+1, v1:t) has covariance[

P t,σtt P t,σtt (Ast+1)T

Ast+1P t,σtt Ast+1P t,σtt (Ast+1)T + Σst+1
H

]
.

By using the formula of Gaussian conditioning we deduce the
p(ht|ht+1, σt, st+1, v1:t) is Gaussian with mean and covariance given by

ĥt,σtt + Â
σt,st+1
t (ht+1 −Ast+1 ĥt,σtt ), P t,σtt − Âσt,st+1

t Ast+1P t,σtt ,

where Âσt,st+1
t = P t,σtt (Ast+1)T(Ast+1P t,σtt (Ast+1)T +Σst+1

H )−1. This can
be equivalently expressed by the linear system of reverse dynamics

ht = Â
σt,st+1
t ht+1 + m̂

σt,st+1
t + η̂t,

where m
σt,st+1
t = ĥt,σtt − Âσt,st+1

t Ast+1 ĥt,σtt and p(η̂t|σt, st+1, v1:t) =
N (0, P t,σtt −Âσt,st+1

t Ast+1P t,σtt ).
As p(ht+1, η̂t|σt:t+1, v1:T ) = p(η̂t|σt, st+1, v1:t)p(ht+1|σt:t+1, v1:T ), we

deduce that p(ht|σt:t+1, v1:T ) is Gaussian with mean and covariance

ĥ
T,σt:t+1
t = Â

σt,st+1
t ĥ

T,σt+1
t+1 + m̂

σt,st+1
t

= ĥt,σtt + Â
σt,st+1
t (ĥT,σt+1

t+1 −Ast+1 ĥt,σtt ),

P
T,σt:t+1
t = Â

σt,st+1
t P

T,σt+1
t+1 (Âσt,st+1

t )T + P t,σtt −Âσt,st+1
t Ast+1P t,σtt

= P t,σtt +Âσt,st+1
t (P T,σt+1

t+1 −P t,σt,st+1
t+1 )(Âσt,st+1

t )T. (3.23)

Notice that, if we remove dependence on σt:t+1, Equation (3.23) be-
comes the Rauch-Tung-Striebel routines of the LGSSM [Rauch et al.,
1965, Chiappa, 2006].

Since γ̂σTT = α̂σTT is Gaussian, γ̂sT−1,cT−1>1
T−1 is Gaussian, whilst

γ̂
sT−1,1
T−1 is a Gaussian mixture with Sdmax components. More gener-

ally, γ̂σtt has a complex number of components dominated by ST−tdmax.
Gaussian collapsing of γ̂st,1t

ĥT,st,1t =
∑
σt+1

ĥ
T,σt:t+1
t p(σt+1|σt, v1:T ),

P T,st,1t =
∑
σt+1

(
P
T,σt:t+1
t +ĥT,σt:t+1

t (ĥT,σt:t+1
t )T

)
p(σt+1|σt,v1:T )−ĥT,σtt (ĥT,σtt )T,
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reduces the cost of the γ̂σtt recursion to O(TS2dmax).
In similar models in which h1:T are discrete, the recursion for γ̂σtt

has cost O(TS2dmax).

Across-segments independence. The recursion for γσtt becomes

γσtt =
{
δct>1
st+1=st
ct+1=ct−1

p(σt|σt+1, v1:T ) + δct=1
∑
σt+1

p(σt|σt+1, v1:t,����vt+1:T )
}
γ
σt+1
t+1

=
{
δct>1
st+1=st
ct+1=ct−1

(1−p(c̃t=1, st|σt+1, v1:t)) + δct=1
∑
σt+1

p(σt|σt+1, v1:t)
}
γ
σt+1
t+1 ,

and therefore the EC approximation p(σt|σt+1, v1:T ) ≈ p(σt|ht+1 =
ĥ
T,σt+1
t+1 , σt+1, v1:t) is not required. This recursion has cost O(TS2dmax).
The recursion for γ̂σtt becomes

γ̂σtt = δct>1
st+1=st
ct+1=ct−1

p(ht|σt:t+1, v1:T )

+ δct=1
�
�
�

∑
σt+1

p(ht|σt,���σt+1, v1:t,����vt+1:T )(((((
(((p(σt+1|σt, v1:T ) . (3.24)

Notice that the simplification with respect to recursion (3.21) arises
from the combination of across-segment independence and the fact that
ct encodes information about the end of the segment, and therefore
about ct+1 for ct > 1.

If α̂σtt is not collapsed, we can group the components of α̂σtt into
2 groups corresponding to ct−1 = 1 and ct−1 = ct + 1. For example,
α̂st,dmax−2
t is a mixture of 3 components in which two components cor-

respond to ct−1 = dmax−1 (specifically to ct−1 = dmax−1, ct−2 = dmax
and ct−1 = dmax − 1, ct−2 = 1), and one component corresponds to
ct−1 = 1. Consider recursion (3.24) for ct > 1. At time-step T − 1
the EC approximation p(hT |σT−1:T , v1:T ) ≈ p(hT |σT , v1:T ) in Equa-
tion (3.22) is not needed. The derivations following Equation (3.22)
produce a Gaussian mixture p(hT−1|σT−1, v1:T ) with dmax − cT−1 + 1
components (due to α̂σT−1

T−1 ), which can be grouped into 2 groups cor-
responding to cT−2 = 1 and cT−2 = cT−1 + 1. At time-step T − 2,
the EC approximation p(hT−1|σT−2:T−1, v1:T ) ≈ p(hT−1|σT−1, v1:T ) in
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ct−1 ct ct+1

st−1 st st+1

ht−1 ht ht+1

vt−1 vt vt+1

(a)

ct−1 ct ct+1

st−1 st st+1

ht−1 ht ht+1

vt−1 vt vt+1

(b)

ct−1 ct ct+1

st−1 st st+1

ht−1 ht ht+1

vt−1 vt vt+1

ct = 1

(c)

Figure 3.9: (a): Explicit-duration SLGSSM using increasing count variables. (b):
Across-segment independence is enforced with a link from ct to ht, as explicitly
represented in (c).

Equation (3.22) is not needed, as we can use the components of γσT−1
T−1

corresponding to cT−2 = cT−1 + 1. More generally, the EC approxi-
mation p(ht+1|σt:t+1, v1:T ) ≈ p(ht+1|σt+1, v1:T ) is not needed and γ̂σtt
is a Gaussian mixture with dmax − ct + 1 components. Therefore, the
recursion for γ̂σtt has cost O(TSd2

max).
With Gaussian collapsing of α̂σtt , γ̂σtt is Gaussian and the cost re-

duces to O(TSdmax). However the EC approximation is required in this
case.

In similar models in which h1:T are discrete, the recursion for γ̂σtt
has cost O(TSdmax) and the EC approximation is required (a grouping
approach as the one described above could alternatively be employed,
but this would increase the cost to O(TSd2

max) in both filtering and
smoothing).

3.5.2 Increasing Count Variables

The explicit-duration SLGSSM using increasing count variables has
belief network representation given in Figure 3.9(a). Across-segment
independence can be enforced by adding a link from ct to ht as in
Figure 3.9(b), which has the effect of removing the link from ht−1 to ht
if ct = 1, as explicitly represented in Figure 3.8(c). More specifically,
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dependence cut is defined as

p(ht|ht−1, σt) =

p(ht|σt) = N (ht;µst ,Σst) if ct=1
N (ht;Astht−1,Σst

H) if ct>1.

Filtering

The recursion for ασtt = p(σt|v1:t) is given by18

ασtt =
∑
σt−1 p(σt−1:t, vt|v1:t−1)∑
σ̃t−1:t p(σ̃t−1:t, vt|v1:t−1)

∝
∑
σt−1

p(vt|σt−1, st,��ct, v1:t−1)p(σt|σt−1,���v1:t−1)p(σt−1|v1:t−1)

=
{
δct>1
st−1
ct−1=ct−1

λσt−1+ δct=1
∑
st−1

πstst−1

∑
ct−1

(1−λσt−1)
}
e
σt−1,st
t α

σt−1
t−1 ,

where eσt−1,st
t = p(vt|σt−1, st, v1:t−1). This recursion has computational

cost O(TS2dmax).
The recursion for α̂σtt = p(ht|σt, v1:t) is given by

α̂σtt =
∑
σt−1

p(ht|σt−1, st,��ct, v1:t)p(σt−1|σt, v1:t) (3.25)

=
{
δct>1
st−1=st
ct−1=ct−1

+ δct=1
∑
σt−1

p(σt−1:t, vt|v1:t−1)∑
σ̃t−1 p(σ̃t−1, σt, vt|v1:t−1)

}
p(ht|σt−1, st, v1:t),

where we have used p(σt−1 = (st, ct− 1)|st, ct > 1, v1:t) = 1. Therefore,
since α̂σ1

1 is Gaussian, α̂s2,c2>1
2 is Gaussian and α̂s2,1

2 is a Gaussian
mixture with Sdmax components. In general, α̂σtt has a complex number
of components dominated by St−1dmax. Gaussian collapsing of α̂st,1t

ĥt,st,1t =
∑
σt−1

p(σt−1|σt, v1:t)ĥt,σt−1,st
t ,

P t,st,1t =
∑
σt−1

p(σt−1|σt, v1:t)(P t,σt−1,st
t +ĥt,σt−1,st

t (ĥt,σt−1,st
t )T)−ĥt,σtt (ĥt,σtt )T,

reduces the cost of the recursion for α̂σtt to O(TS2dmax).
In similar models in which h1:T are discrete, the recursion for α̂σtt

has cost O(TS2dmax).
18Notice the similarity with recursion (3.3).
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Across-segment independence. The recursion for ασtt becomes

ασtt ∝
∑
σt−1

p(vt|σt−1, st, ct, v1:t−1)p(σt|σt−1,���v1:t−1)p(σt−1|v1:t−1)

= δct>1
st−1=st
ct−1=ct−1

λσt−1p(vt|σt−1:t, v1:t−1)ασt−1
t−1

+ δct=1
∑
st−1

πstst−1

∑
ct−1

(1−λσt−1)p(vt|���σt−1, σt,���v1:t−1)ασt−1
t−1 ,

with p(vt|st, ct = 1) = N (vt;Bstµst , BstΣst(Bst)T + Σst
V ), and with

p(vt|σt−1 = (st, ct − 1), st, ct > 1, v1:t−1) estimated as in the case of
across-segment dependence. This recursion has cost O(TS2dmax).

The recursion for α̂σtt becomes

α̂σtt =
∑
σt−1

p(ht|σt−1, st, ct, v1:t)p(σt−1|σt, v1:t)

= δct>1
st−1=st
ct−1=ct−1

p(ht|σt−1:t, v1:t)

+ δct=1
�
�
�

∑
σt−1

p(ht|���σt−1, σt,���v1:t−1, vt)(((((
((p(σt−1|σt, v1:t), (3.26)

where p(ht|st, ct = 1, vt) is Gaussian with mean and covariance as in
Equation (3.19), and where p(ht|σt−1 = (st, ct − 1), st, ct > 1, v1:t) can
estimated using the recursions (3.16) and (3.18) with different indexes.
Therefore α̂σtt is Gaussian and the recursion has cost O(TSdmax). The
recursion essentially performs filtering in a LGSSM on vt:t+dmax−1 for
all t and st.

Notice that the simplification with respect to recursion (3.25) arises
from the combination of across-segment independence and the fact that
ct encodes information about the start of the segment, and therefore
about ct−1 for ct > 1.

In similar models in which h1:T are discrete, the recursion for α̂σtt
has cost O(TSdmax).
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Smoothing

The recursion for γσtt is given by

γσtt =
∑
σt+1

p(σt|σt+1, v1:T )p(σt+1|v1:T )

=δct<dmaxγ
st,ct+1
t+1 + δct≥dmin

ct+1=1

∑
st+1

p(σt|σt+1, v1:T )︸ ︷︷ ︸
≈p(σt|ht+1=ĥT,σt+1

t+1 ,σt+1,v1:t)

γ
σt+1
t+1

=δct<dmaxγ
st,ct+1
t+1

+δct≥dmin
ct+1=1

∑
st+1

πst+1st(1−λσt)ασtt p(ht+1 = ĥ
T,σt+1
t+1 |σt, st+1, v1:t)∑

σ̃t πst+1s̃t(1−λσ̃t)ασ̃tt p(ht+1 = ĥ
T,σt+1
t+1 |σ̃t, st+1, v1:t)

γ
σt+1
t+1 ,

where we have used p(σt = (st+1, ct+1 − 1)|st+1, ct+1 > 1, v1:T ) = 1.
This recursion has cost O(TS2dmax).

The recursion for γ̂σtt = p(ht|σt, v1:T ) is given by

γ̂σtt =
∑
σt+1

p(ht|σt:t+1, v1:T )p(σt+1|σt, v1:T ), (3.27)

where

p(σt+1|σt, v1:T ) = p(σt|σt+1, v1:T )p(σt+1|v1:T )∑
σ̃t+1 p(σt|σ̃t+1, v1:T )p(σ̃t+1|v1:T )

∝
{
δct<dmax
st+1=st
ct+1=ct+1

+ δct≥dmin
ct+1=1

p(σt|σt+1, v1:T )
}
γ
σt+1
t+1 ,

and where p(ht|σt:t+1, v1:T ) is computed as in Equation (3.23). How-
ever notice that, for ct+1 > 1, p(ht+1|σt, σt+1 = (st, ct + 1), v1:T ) =
p(ht+1|σt+1 = (st, ct + 1), v1:T ), and therefore the EC approximation
p(ht+1|σt:t+1, v1:T ) ≈ γ̂

σt+1
t+1 in Equation (3.22) becomes exact. Indeed

for ct+1 > 1

p(ht+1|σt+1, v1:T ) =
∑
σt

p(ht+1|σt:t+1, v1:T )p(σt|σt+1, v1:T )

= p(ht+1|σt=(st+1,ct+1−1), σt+1, v1:T ).

With Gaussian collapsing of α̂σtt , γ̂σtt is a Gaussian mixture with ST−t+1

components. Gaussian collapsing reduces the cost to O(TS2dmax).
In similar models in which h1:T are discrete, the recursion for γ̂σtt

has cost O(TS2dmax).
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Across-segments independence. The recursion for γσtt becomes

γσtt = δct<dmaxγ
st,ct+1
t+1 + δct≥dmin

ct+1=1

∑
st+1

p(σt|σt+1, v1:t,����vt+1:T )γσt+1
t+1 ,

and therefore the EC approximation p(σt|σt+1, v1:T ) ≈ p(σt|ht+1 =
ĥ
T,σt+1
t+1 , σt+1, v1:t) is not required. This recursion has cost O(TS2dmax).
The recursion for γ̂σtt becomes

γ̂σtt = δct<dmax
st+1=st
ct+1=ct+1

p(ht|σt:t+1, v1:T )p(σt+1|σt, v1:T )

+ δct≥dmin
ct+1=1

�
�
�

∑
st+1

p(ht|σt,���σt+1, v1:t,����vt+1:T )p(���st+1, ct+1|σt, v1:T ), (3.28)

and therefore the EC approximation p(ht+1|σt:t+1, v1:T ) ≈ γ̂
σt+1
t+1

in Equation (3.22) is not required. Since p(ht|σt, v1:t) is Gaussian,
p(ht|σt, v1:T ) is a Gaussian mixture with dmax− ct + 1 components and
therefore the recursion has cost O(TSd2

max). Gaussian collapsing is not
necessarily required, but can be used to reduce the cost to O(TSdmax).

Notice that is the combination of across-segment independence and
the fact that ct encodes information about the start of the segment,
and therefore about ct − 1 for ct > 1, that eliminates the need of the
EC approximations.

In similar models in which h1:T are discrete, the recursion for γ̂σtt
has cost O(TSdmax).

3.5.3 Count-Duration Variables

The explicit-duration SLGSSM using count-duration variables has be-
lief network representation given in Figure 3.10(a). Across-segment in-
dependence can be enforced with a link from ct to ht as in Figure
3.10(b), which has the effect of removing the link from ht to ht+1 if
ct = 1, as explicitly represented in Figure 3.10(c). More specifically,
dependence cut is defined as

p(ht|ht−1, ct−1, st) =

p(ht|ct−1, st) = N (ht;µst ,Σst) if ct−1 =1
N (ht;Astht−1,Σst

H) if ct−1>1.
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ct−1 ct ct+1

dt−1 dt dt+1

st−1 st st+1

ht−1 ht ht+1

vt−1 vt vt+1

(a)

ct−1 ct ct+1

dt−1 dt dt+1

st−1 st st+1

ht−1 ht ht+1

vt−1 vt vt+1

(b)

ct−1 ct ct+1

dt−1 dt dt+1

st−1 st st+1

ht−1 ht ht+1

vt−1 vt vt+1

ct = 1

(c)

Figure 3.10: (a): Explicit-duration SLGSSM using count-duration variables. (b):
Across-segment independence is enforced with a link from ct to ht, as explicitly
represented in (c).

In this section, we only discuss the across-segment-independence case
and leave the description of the across-segment-dependence case to Ap-
pendix A.5.

If only segmentation is of interest, we can employ the segmental in-
ference approach described in §3.4.3 with segment-emission distribution
est,dtt = p(vt−dt+1:t|σ1

t ) estimated as the likelihood of a LGSSM. Naive
estimation would require to perform filtering in a LGSSM with cost
O(dt) for each t, st and dt, and therefore with total cost O(TS2d2

max).
However, the cost can be reduced to O(TS2dmax) by recursive com-
putation of est,dtt as, dropping conditioning on the regime and count-
duration variables,

est,dtt =p(vt|vt−dt+1:t−1)
t−1∏

τ=t−dt+1
p(vτ |vt−dt+1:τ−1) = p(vt|vt−dt+1:t−1)est,dt−1

t−1 ,

with p(vt|vt−dt+1:t−1) = N (Bĥt−1
t , BP t−1

t BT + ΣV ), where ĥt−1
t and

P t−1
t are the mean and covariance of p(ht|v1:t−1).
If also estimation of the smoothed distribution p(ht|v1:T ) is of in-

terest, γσtt can be obtained from the equivalence γσtt = γst,dt,1t+ct−1, where
γst,dt,1t+ct−1 can be computed with segment-recursive routines.

If also estimation of the filtered distribution p(ht|v1:t) is of inter-
est, a time-recursive routine for ασtt with cost O(TS2dmax) is required
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(recursion (A.5)).
The distributions α̂σtt = p(ht|σt, v1:t) and γ̂σtt = p(ht|σt, v1:T ) can

be obtained with cost O(TSdmax) and O(TSd2
max) respectively.

Indeed, the computation of α̂σtt = p(ht|σt, vt−dt+ct:t) would seem
to require filtering in a LGSSM with cost O(dt) for each t and σt, and
therefore with total cost O(TSd3

max). However, we can observe that α̂σtt
is equivalent to all α̂σ

′
t
t for which s′t = st and for which d′t− c′t = dt− ct

(i.e. for which the segment starts at time-step t − dt + ct). Therefore,
only filtering in a LGSSM with cost O(dmax) on segment vt:t+dmax−1
for each t and st is required. The same observation can be made from
the time-recursive routine (A.6).

The computation of γ̂σtt = p(ht|σt, vt−dt+ct:t+ct−1) requires smooth-
ing in the same LGSSM as the computation of γ̂st,dt,dtt−dt+ct , . . . , γ̂

st,dt,ct+1
t−1 ,

γ̂st,dt,ct−1
t+1 , . . . , γst,dt,1t+ct−1, as the same segment vt−dt+ct:t+ct−1 is involved.

Therefore, smoothing in a LGSSM with cost O(dt) on segment vt:t+dt−1
for each t, st and dt is required. The same observation can be made
from the time-recursive routine (A.8).

Notice that the use of uncollapsed count variables, rather than col-
lapsed ones as done in the standard approach to explicit-duration mod-
elling [Ferguson, 1980, Rabiner, 1989, Ostendorf et al., 1996, Murphy,
2002, Yu, 2010], simplifies the derivation of p(ht|v1:t) and p(ht|v1:T ).

Movement segmentation example

In this section we show that the explicit-duration SLGSSM with across-
segment independence and the constraint πii 6= 0 can be used to solve
the segmentation task discussed in Chapter 1, namely to segment the
time series displayed in Figure 3.11 – corresponding to the recording of
the leg positions of an individual performing repetitions of the actions
low jumping up and down, high jumping up and down, hopping on the
left foot, and hopping on the right foot – into the underlying actions
and their repetitions.

The time series was manually segmented with the help of an associ-
ated video, assuming 7 basic movement types. The manual segmenta-
tion is shown in Figure 3.11, where the dotted vertical lines indicate the
movement starts, the numbers in the first row indicate the movement
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Figure 3.11: Time series corresponding to the recording of the leg positions of
an individual performing repetitions of the actions low jumping up and down, high
jumping up and down, hopping on the left foot, and hopping on the right foot. The
dotted vertical lines give a manual segmentation into 7 basic movements and their
repetitions. The numbers in the first row indicate the movement types, whilst the
numbers in the second row indicate the durations. The stars indicate the segmen-
tation obtained with the explicit-duration SLGSSM (the movement types were all
correctly inferred).

types, and the numbers in the second row indicate the durations.
We used the manual segmentation and 7 LGSSMs to learn the pa-

rameters representing each movement type. We then performed ex-
tended Viterbi with an explicit-duration SLGSSM using the learned
parameters and employing a uniform segment-duration distribution,
with minimum and maximum durations 15 and 50 for the first 4 types
of movement respectively, and 10 and 25 for the second 3 types of
movement respectively.

The model correctly inferred all movement types and accurately
detected the movement starts, as indicated by the stars in Figure 3.11.

3.6 Approximations

Whilst empowering standard MSMs with stronger modelling capabil-
ities, explicit-duration MSMs can have high computational cost. For
simplicity, consider the case of one regime only. The computation of
ασtt = p(σt|v1:t) and γσtt = p(σt|v1:T ) has costO(Tdmax). In models with
unobserved variables h1:T related by first-order Markovian dependence,
the computation of α̂σtt = p(ht|σt, v1:t) and γ̂σtt = p(ht|σt, v1:T ) has also
at best cost O(Tdmax). If dmax is large the cost becomes prohibitive.
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If dmax = ∞, the cost becomes at best O(T 2). Several approximation
techniques have been proposed in the literature to address this issue.

A review of approximation methods introduced for extended Viterbi
in the explicit-duration HMM is given in Ostendorf et al. [1996]. The
basic idea is to reduce the space of possible segmentations by constrain-
ing the maximization. For example, in the segmental extended Viterbi
of §3.4.3, maximization over dt can be constrained to a subset Dt of the
original set {dmin, . . . , dmax}. The subset Dt can be chosen in advance
with a simpler model or during the decoding.

Pruning methods were also introduced in the changepoint/reset
model literature. In changepoint/reset models, dependence from the
past is cut at the occurrence of a changepoint. Older approaches em-
ploy one regime only, and therefore the occurrence of a changepoint
corresponds to the reset of the current dynamics to its initial condi-
tion. More recent approaches can employ more than one regime, and
therefore the occurrence of a changepoint can also correspond to the re-
set and change of the current dynamics. Whilst the goal of changepoint
models is only to detect abrupt changes in the time series, reset models
are also often used as approximations of complex models. Commonly,
changepoint/reset models do not impose constraints on the segment
duration.

Older approaches to changepoint models fix the number of change-
points a priori. More recent Bayesian approaches define a distribu-
tion on the number and positions of changepoints through a segment-
duration distribution [Fearnhead, 2006, Fearnhead and Liu, 2007,
Adams and MacKay, 2007, Fearnhead and Vasileiou, 2009, Eckley et al.,
2011]. This is achieved by using either increasing count variables or vari-
ables that indicate the time-step of the most recent changepoint prior
to time-step t (i.e. ct = ct−1 or ct = t − 1), which provide the same
information as increasing count variables.

In reset models, dependence cut is commonly obtained with a vari-
able ct taking value 1 when a changepoint occurs and 2 otherwise
[Cemgil et al., 2006, Barber and Cemgil, 2010] (e.g. with p(ct = 2) = λ

and p(ct = 1) = 1−λ, which gives a geometric segment-duration distri-
bution – this approach can be seen as a special case of the increasing-



62 Explicit-Duration Modelling

count-variable approach). As discussed in §3.5, Bracegirdle and Barber
[2011] and Bracegirdle [2013] recently suggested the use of increasing
count variables and increasing-decreasing count variables in reset mod-
els in order to achieve sequential filtering-smoothing and to approxi-
mate inference.

To understand the basic idea of the pruning methods suggested,
consider the increasing-count-variable approach with dmax = ∞ and
the constraint p(ct > t) = 0 (obtained, e.g., by imposing λ̃1 = 1,
see §3.2). From recursion (3.3), we can deduce that ασtt = 0 implies
αst,ct+1
t+1 = . . . = αst,ct+T−tT = 0, i.e. if according to v1:t a segment

starting at time-step t−ct+1 and generated by st cannot have duration
≥ ct, that segment cannot have duration ≥ ct + 1 after incorporating
observations vt+1, etc. If only D elements of ασtt are non-zero, then
only D + 1 elements of αst,ct+1

t+1 are non-zero, and so on. Therefore,
we can retain only D elements of the count variable by eliminating one
element at each time-step, reducing the computational cost from O(T 2)
to O(TD). As ασtt = 0 implies γσtt = γst,ct+1

t+1 = . . . = γst,ct+T−tT =
0 (recursion (3.4)), pruning of ασtt automatically reduces the cost of
computing γσtt to O(TD).

A similar reasoning can be made in the count-duration-variable
approach with dmax = ∞ and the constraint p(dt > t, ct = 1) = 0
(obtained, e.g., by imposing ˜̃ρd1d1 = 1, see §3.3), by looking at time-
recursive routines (A.5) and (A.7). From routine (A.5), we deduce that
ασtt = 0 implies αst,dt,ct−1

t+1 = . . . = αst,dt,1t+ct−1 = 0 and α
st,d′t,c

′
t

t = 0 if
dt− ct = d′t− c′t, i.e. if according to v1:t a segment starting at time-step
t − dt + ct and generated by st cannot have duration ≥ dt − ct + 1,
that segment cannot have duration ≥ dt − ct + 2 after incorporating
observations vt+1, etc. From routine (A.7), we deduce that ασtt = 0
implies γσtt = γst,dt,ct−1

t+1 = . . . = γst,dt,1t+ct−1 = 0.
For the explicit-duration SLGSSM with across-segment indepen-

dence, this pruning procedure implies that, instead of LGSSM filtering
on vt:T for each t and st with cost O(T 2S) and LGSSM smoothing on
vt:t+dt−1 for each t, dt ∈ {1, . . . , T − t + 1} and st with cost O(T 3S),
only LGSSM filtering on vt:t+D−1 for each t and st with cost O(TSD)
and LGSSM smoothing on vt:t+dt−1 for each t and dt ∈ {1, . . . ,D} with
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cost O(TD2) is required.
Pruning is performed using a resampling idea from Fearnhead and

Liu [2007], Liu et al. [1998] in Fearnhead and Vasileiou [2009], and
by dropping the element of ασtt with lowest value in Bracegirdle and
Barber [2011] and Bracegirdle [2013].

Other approximation techniques based on combining regime vari-
ables with and without corresponding explicit-duration variables, on
binning the duration distribution and on beam-sampling were proposed
in Stanke and Waack [2003], Jiang [2010] and Dewar et al. [2012] re-
spectively.



4
Discussion

Explicit-duration Markov switching models (MSMs) enrich the mod-
elling capabilities of standard MSMs with the possibility to define
segment-duration distributions of any form, to impose complex depen-
dence between the observations, and to reset the dynamics to initial
conditions.

From a generative viewpoint, they differ from standard MSMs as the
regime variable st is either sampled from the transition distribution or
set to st−1, depending on the values taken by the explicit-duration vari-
ables. This mechanism is achieved through a first-order Markov chain
on the combined regime and explicit-duration variables that partitions
the time series into segments, with boundaries at those time-steps in
which sampling occurs.

The first-order Markov chain can be defined using three funda-
mentally different encodings for the explicit-duration variables, namely
distance to current-segment end with decreasing count variables, dis-
tance to current-segment beginning with increasing count variables, or
distance to both current-segment beginning and current-segment end
with count-duration variables.

Different encoding leads to different possible structures for the con-
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ditional distribution of the observations. Information about both seg-
ment beginning and segment end allows the most complex structure,
namely any conditional distribution within a segment. In this complex
case, inference can only be achieved with recursions that operate at a
segment level rather than at a single time-step level.

In models that have complex unobserved structure, different en-
coding gives rise to different computational cost and approximation
requirements for inference. As we have seen in §3.5.3, in models con-
taining additional unobserved variables related by first-order Marko-
vian dependence, increasing count variables are overall preferable.

In the literature, explicit-duration MSMs are most commonly called
hidden semi-Markov models or segment models and are informally de-
scribed as extensions of standard MSMs in which, rather than single
observations, segments of observations are generated from a sampled
regime [Ostendorf et al., 1996, Yu, 2010]. They originate from the idea
to extend the hidden Markov model by defining a semi-Markov process
on the regime variables. The original approach, introduced in Ferguson
[1980] and later re-explained in Rabiner [1989], achieves that by in-
troducing duration variables, and by deriving inference recursions that
operate at a segment level. This approach is currently the most common
approach to explicit-duration modelling.

Although count-duration variables are mentioned in Yu [2010], their
use to simplify derivations with respect to the standard approach first
appeared in Chiappa and Peters [2010]. As we have seen in §3.4.3 and
Appendix A.3, computing posterior distributions at time-steps that do
not correspond to segment ends with count-duration variables is more
immediate than with the standard approach. The benefit is particularly
evident when full inference in models that have complex unobserved
structure is required, as discussed in §3.5.3.

The decreasing-count-variable approach with independence among
observations was introduced in Yu and Kobayashi [2003a] to enable the
derivation of computationally less expensive inference routines than the
segmental routines. However, as explained in §3.4.3 and already ob-
served in Mitchell et al. [1995] and Murphy [2002], the same improve-
ment can also be reached with recursive computation of the segment-
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emission distribution in the segmental routines.
Work in the direction of increasing count variables first appeared in

Djurić and Chun [2002], but explicit introduction was given in Huang
et al. [2006] and Oh et al. [2008].
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A
Miscellaneous

A.1 EM in the Switching Autoregressive Model

Consider the switching autoregressive model (2.2) with ṽt =
[vt−k . . . vt−1]T, where the symbol T indicates the transpose opera-
tor, and ast = [ast1 . . . astk ]. The expectation of the complete data log-
likelihood is given by (omitting the first k observations)

T∑
t=k+1
〈log p(vt|st, vt−k:t−1)〉γstt +〈log p(s1)〉γs1

1
+

T∑
t=2
〈log p(st|st−1)〉

γ̃
st−1:t
t

=

− 1
2
∑
t

〈log(σst)2+ (vt−ast ṽt)2

(σst)2 〉γstt +〈log π̃s1〉γs1
1

+
∑
t

〈log πstst−1〉γ̃st−1:t
t

,

where (see Equation (2.5))

γ̃
st−1:t
t = p(st−1:t|v1:T ) =

πstst−1α
st−1
t−1∑

s̃t−1 πsts̃t−1α
s̃t−1
t−1

γstt ,

69



70 Miscellaneous

giving updates

ast =
∑
t

γstt vtṽ
T
t

(∑
t

γstt ṽtṽ
T
t

)−1
, (σst)2 =

∑
t γ

st
t (vt − ast ṽt)2∑

t γ
st
t

,

π̃s1 = γs1
1 , πstst−1 =

∑T
t=2 γ̃

st−1:t
t∑T

t=2
∑
s̃t γ̃

st−1,s̃t
t

.

A.2 HMM as a Decreasing-Count-Variable MSM

The HMM with initial-regime distribution ˜̂π and transition distribution
π̂ has the same joint distribution p(s1:T , v1:T ) of a decreasing-count-
variable MSM with dmin = 1, dmax =∞, and with

π̃s1 = ˜̂πs1 , πst+1st =


π̂st+1st
1−π̂stst

if st+1 6=st

0 if st+1 =st ,

ρ̃σ1 = π̂c1−1
s1s1 (1− π̂s1s1) , ρσt = π̂ct−1

stst (1− π̂stst).

This can be demonstrated by showing that∑
c1:T

p(s1)p(c1|s1)
T∏
t=2

p(st|σt−1)p(ct|st, ct−1) = ˜̂πs1

T∏
t=2

π̂stst−1 . (A.1)

Since πstst = 0, s1:T determine the values of the count variables at all
time-steps with exception of the last segment. Let’s consider the case
of two or more regime changes (the other cases can be demonstrated
similarly). Suppose that two consecutive regime changes occur at time-
steps τ+1 > 1 and τ+d+1 ≤ T , i.e. sτ 6= sτ+1 = · · · = sτ+d 6= sτ+d+1.
Then cτ = 1, cτ+1 = d, . . . , cτ+d−1 = 2, cτ+d = 1, and therefore
τ+d∏
t=τ+1

p(st|σt−1)p(ct|st, ct−1) = p(sτ+1|sτ , cτ =1)p(cτ+1|sτ+1, cτ =1)

= (1−π̂sτ+1sτ+1)πsτ+1sτ

τ+d∏
t=τ+2

π̂stst−1

=
1−π̂sτ+1sτ+1 =nτ+1

1−π̂sτ sτ =nτ

τ+d∏
t=τ+1

π̂stst−1 . (A.2)

There are two possible scenarios for the change of regime after time-
step τ + d+ 1, namely it occurs
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• At time-step T or before, i.e. sτ+d+1 = · · · = sτ+d′ 6= sτ+d′+1
with τ + d′ < T , giving

τ+d′∏
t=τ+d+1

p(st|σt−1)p(ct|st, ct−1)=
1−π̂sτ+d+1sτ+d+1

1−π̂sτ+dsτ+d =nτ+1

τ+d′∏
t=τ+d+1

π̂stst−1 .

• After time-step T , i.e. sτ+d+1 = · · · = sT , giving

∑
cτ+d+1:T

T∏
t=τ+d+1

p(st|σt−1)p(ct|st, ct−1) = πsτ+d+1sτ+d

× (1−π̂sτ+d+1sτ+d+1)
∞∑

cτ+d+1=T−τ−d
π̂
cτ+d+1−1
sτ+d+1sτ+d+1︸ ︷︷ ︸

π̂T−τ−d−1
sτ+d+1sτ+d+1

= 1
1−π̂sτ+dsτ+d =nτ+1

T∏
t=τ+d+1

π̂stst−1 .

Analogously, there are two possible scenarios for the change of regime
before time-step τ + 1, namely it occurs

• After time-step 1, i.e. sτ−d′ 6= sτ−d′+1 = · · · = sτ with τ−d′+1 >
1, giving

τ∏
t=τ−d′+1

p(st|σt−1)p(ct|st, ct−1)=
1−π̂sτ−d′+1sτ−d′+1=nτ

1−π̂sτ−d′sτ−d′

τ∏
t=τ−d′+1

π̂stst−1 .

• At time-step 1 or before, giving
τ∏
t=1

p(st|σt−1)p(ct|st, ct−1) = (1−π̂s1s1 =nτ )˜̂πs1

τ∏
t=2

π̂stst−1 .

Therefore, in Equation (A.1), nτ+1 of Equation (A.2) cancels with nτ+1
in the following regime, whilst nτ cancels with nτ in the preceding
regime.

Notice that, to use the model, conditioning on the event cT = 1
would be required and the equivalence would not longer hold.
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The recursion for p(st, v1:t) using recursion (3.1) reduces to the
HMM recursion for p(st, v1:t) (see recursion (2.3)). Indeed

p(st,v1:t) =
∞∑
ct=1

p(σt, v1:t) =
∞∑
ct=1

α̂σtt

= p(vt|st)
∞∑
ct=1

{
α̂st,ct+1
t−1 + ρσt

∑
st−1 6=st

πstst−1α̂
st−1,1
t−1

}

= p(vt|st)
{ ∞∑
ct=1

π̂ststα̂
σt
t−1+

∑
st−1 6=st

πstst−1 (1−π̂stst)
∞∑
ct=1

π̂ct−1
stst︸ ︷︷ ︸

(1−π̂st−1st−1 )
∑∞

ct=1 π̂
ct−1
st−1st−1

α̂
st−1,1
t−1

}

= p(vt|st)
∑
st−1

π̂stst−1

∞∑
ct−1=1

α̂
σt−1
t−1 ,

where α̂st,ctt = π̂ststα̂
st,ct−1
t for ct > 1, and therefore α̂σtt = π̂ct−1

stst α̂
st,1
t ,

can be proven by induction. The proof is trivial for t = 1. Suppose that
the result holds for t− 1, then it holds for t as

α̂σtt = p(vt|st)
{
α̂st,ct+1
t−1 + ρσt

∑
st−1 6=st

πstst−1α̂
st−1,1
t−1

}

= p(vt|st)
{
π̂ststα̂

st,ct
t−1 + π̂stst π̂

ct−1−1
stst (1− π̂stst)

∑
st−1 6=st

πstst−1α̂
st−1,1
t−1

}
= π̂ststα̂

st,ct−1
t .

The HMM recursion for p(vt+1:T |st, vt−k+1:t) (see recursion (2.4)) can-
not be obtained.

A.3 Relation between EM in §3.4.3 and in Rabiner [1989]

In the explicit-duration HMM of Rabiner [1989], αt(st) (Equation (65))
corresponds to the sum over dt of ᾱσ

1
t = p(st, dt, ct = 1, v1:t), whilst

βt(st) (Equation (72)) is equivalent to βst,1t = p(vt+1:T |st, ct = 1). Ra-
biner [1989] additionally defines the joint probability of observations
up to time t and change to regime st+1 at time-step t + 1, α∗t (st+1)
(Equation (71)), and the probability of observations from time t + 1
given change to regime st+1, β∗t (st+1) (Equation (73)).
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The update for the segment-duration distribution is given by (Equation
(81))

ρ̄st(dt) =
∑T
t=1 α

∗
t (st)ρst(dt)βt+dt(st)

∏t+dt
s=t+1 bst(Os)∑D

dt=1
∑T
t=1 α

∗
t (st)ρst(dt)βt+dt(st)

∏t+dt
s=t+1 bst(Os)

.

From the relation between αt(st) and α∗t (st) (Equation (75))

αt(st) =
∑
dt

α∗t−dt(st)ρst(dt)
t∏

s=t−dt+1
bst(Os),

we obtain α∗t (st)ρst(dt)
∏t+dt
s=t+1 bst(Os) = ᾱst,dt,1t+dt , which gives equiva-

lence with update (3.10).
The update for the transition distribution is given by (Equation

(79))

āst−1st =
∑T
t=2 αt−1(st−1)ast−1stβ

∗
t−1(st)∑N

j=1
∑T
t=2 αt−1(st−1)ast−1stβ

∗
t−1(st)

.

Equation (3.12) can be expressed in terms of ᾱσ
1
t−1
t−1 and βst,1t+dt−1 as

p(st−1, ct−1 =1, st|v1:T ) =
πstst−1

∑
dt−1 α

σ1
t−1
t−1∑

s̃t−1 πsts̃t−1

∑
d̃t−1

α
σ̃1
t−1
t−1

∑
dt

γst,dt,1t+dt−1

∝ πstst−1

∑
dt−1

ᾱ
σ1
t−1
t−1

∑
dt

βst,1t+dt−1ρstdtp(vt:t+dt−1).

From the relation between β∗t (st) and βt(st) (Equation (77)), we obtain

β∗t−1(st) =
∑
dt

β̂t+dt−1(st)ρst(dt)
t+dt−1∏
s=t

bst(Os),

and therefore p(st−1, ct−1 = 1, st|v1:T ) ∝ πstst−1αt−1(st−1)β∗t−1(st),
which gives equivalence with update (3.11).

The smoothed distribution p(st|v1:T ) is computed as p(st|v1:T ) ∝∑
τ<t α

∗
τ (st)β∗τ (st)−βτ (st)ατ (st) (Equation (80)), i.e. by summing over

the set of segments passing through time-step t, which is obtained by
subtracting all segments ending before time-step t from all segments
starting at time-step t or before. In Equation (3.8), we instead obtain
this set as the set of segments that start at time-step t or before and
end at time-step t or after.
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A.4 Robot Localization with the SLGSSM

In this section, we describe in detail the robot localization problem
discussed §1 and in §3.5. Consider a two-wheeled robot moving at con-
stant velocity in the two-dimensional plane. At each time-step, the
robot undertakes one of the following three types of movement:

• Straight movement: Move both wheels forward by the same dis-
tance k (DR = DL = k, where DR and DL indicate the distance
traveled by the right and left wheel respectively).

• Right-wheel rotation: Move the right wheel forward and keep the
left wheel fixed (DR = 2k,DL = 0).

• Left-wheel rotation: Move the left wheel forward and keep the
right wheel fixed (DR = 0, DL = 2k).

Due to external forces affecting the motion, such as wheel slippage,
the movements effectively performed by the robot differ slightly from
the intended ones. The location of the robot at time-step t is defined
by a triplet (xt, yt, φt), where xt and yt represent the position of the
midpoint of the wheel axle, whilst φt represents the orientation of the
robot (angle formed by the perpendicular to the wheel axle and the
horizontal axis). The dynamics of the robot is given by [Wang, 1990]

xt = xt−1 + r∆D cos(φt−1 + ∆φ/2) + ηxt ,

yt = yt−1 + r∆D sin(φt−1 + ∆φ/2) + ηyt ,

φt = φt−1 + ∆φ+ ηφt , (A.3)

with ∆D = (DR+DL)/2, ∆φ = (DR−DL)/L (where L is the width
of the mower), and with r = 1, r = sin(∆φ/2)/(∆φ/2) for straight and
rotation movements respectively. In Equation (A.3), ηxt , η

y
t and ηφt are

Gaussian noise terms that account for the external forces responsible
for the deviations from the intended movements.

Suppose that, due to errors in the measurement system, only noisy
measurements of the positions can be obtained. The goal is to estimate,
at each time-step t, the actual robot position from the set of measure-
ments up to time-step t (on-line localization) and from all measure-
ments (off-line localization). We can compactly write Equation (A.3)
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and the observation process as

h1 =[x1 y1 φ1]T∼N (h1;µ,Σ),

ht=fst(ht−1) + ηht , ht−1 =[xt yt φt]T, ηht =[ηxt η
y
t η

φ
t ]T∼N (ηht ; 0,ΣH),

vt=Bht + ηvt , B =
[

1 0 0
0 1 0

]
, ηvt ∼ N (ηvt ; 0,ΣV ), (A.4)

where st ∈ {1, 2, 3} indicates the type of movement undertaken by
the robot, and fst is the corresponding nonlinear function. We have
therefore formulated the model as a SLGSSM with the only difference
that the hidden dynamics evolves nonlinearly. We can deal with that
with an unscented approximation similar to one proposed in Särkkä
[2008] for the LGSSM, which enables us to use similar inference routines
to the linear case.

A.5 Count-Duration-Variable SLGSSM

In this section, we provide time-recursive inference routines for the
explicit-duration SLGSSM that uses count-duration variables.

Filtering

The recursion for ασtt = p(σt|v1:t) is given by

ασtt =
∑
σt−1 p(vt, σt−1:t|v1:t−1)∑
σ̃t−1:t p(vt, σ̃t−1:t|v1:t−1)

∝
∑
σt−1

p(vt|σt−1, st,��
�dt, ct, v1:t−1)p(σt|σt−1,���v1:t−1)p(σt−1|v1:t−1)

= δct<dt
st−1=st
dt−1=dt
ct−1=ct+1

e
σt−1,st
t α

σt−1
t−1 + δct=dt

ct−1=1
ρstdt

∑
st−1

πstst−1e
σt−1,st
t

∑
dt−1

α
σt−1
t−1 ,

where eσt−1,st
t = p(vt|σt−1, st, v1:t−1). With pre-summation over dt−1,

this recursion has computational cost O(TS2d2
max).

However, notice that ασtt and ασ
′
t
t for which dt − ct = d′t − c′t differ

only in ρstdt and ρs′td′t . As dt−ct ranges from 0 to dmax−1, we can define
a variable c̃t ∈ {1, . . . , dmax} and form a recursion over α̃c̃tt such that
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ασtt = ρstdtα̃
st,dt−ct
t . This approach reduces the cost to O(TS2dmax) (a

similar approach was introduced in Jiang [2010]).
Notice that ασtt = 0 implies αst,dt,ct−1

t+1 = . . . = αst,dt,1t+ct−1 = 0 and
α
σ′t
t = 0 if dt − ct = d′t − c′t, i.e. if according to v1:t a segment starting

at time-step t − dt + ct and generated by st cannot have duration ≥
dt − ct + 1, that segment cannot have duration ≥ dt − ct + 2 after
incorporating observations vt+1, etc.

The recursion for α̂σtt = p(ht|σt, v1:t) is given by

α̂σtt =
∑
σt−1

p(ht|σt−1, st,��
�dt, ct, v1:t)p(σt−1|σt, v1:t)

=
{
δct<dt
st−1=st
dt−1=dt
ct−1=ct+1

+ δct=dt
ct−1=1

∑
st−1
dt−1

p(vt, σt−1:t|v1:t−1)∑
σ̃t−1 p(vt, σ̃t−1:t|v1:t−1)

}
p(ht|σt−1, st, v1:t),

where we have used p(σt−1 = (st, dt, ct + 1)|st, dt, ct < dt) = 1. There-
fore, α̂σtt is a Gaussian mixture with a complex number of components.
Gaussian collapsing of α̂st,dt,ct=dtt reduces the cost to O(TS2d2

max).

Across-segment independence. The recursion for ασtt becomes

ασtt ∝
∑
σt−1

p(vt|σt−1, st, ct, dt, v1:t−1)p(σt|σt−1,���v1:t−1)p(σt−1|v1:t−1)

= δct<dt
st−1=st
dt−1=dt
ct−1=ct+1

p(vt|σt−1:t, v1:t−1)ασt−1
t−1

+ δct=dt
ct−1=1

p(vt|���σt−1, σt,���v1:t−1)ρstdt
∑
st−1

πstst−1

∑
dt−1

α
σt−1
t−1 , (A.5)

where p(vt|st, dt, ct = dt) = N (vt;Bstµst , BstΣst(Bst)T + Σst
V ). As in

the case of across-segment dependence, the computational cost can be
reduced to O(TS2dmax).
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The recursion for α̂σtt = p(ht|σt, v1:t) becomes

α̂σtt =
∑
σt−1

p(ht|σt−1, st, dt, ct, v1:t)p(σt−1|σt, v1:t)

= δct<dt
st−1=st
dt−1=dt
ct−1=ct+1

p(ht|σt−1:t, v1:t)

+ δct=dt
ct−1=1

�
�
��

∑
st−1
dt−1

p(ht|���σt−1, σt,���v1:t−1, vt)(((((
((p(σt−1|σt, v1:t), (A.6)

where p(ht|st, ct, dt = ct, vt) is Gaussian with mean and covariance as
in Equation (3.19). Therefore α̂σtt is Gaussian. Naive computation of
this recursion has cost O(TSd2

max). However, as α̂σtt varies only with
the difference dt − ct for which the segment starts at a different time-
step, rather than with single values of dt and ct, the cost can be re-
duced to O(TSdmax). This recursion essentially performs filtering in a
LGSSM on segment vt:t+dmax−1 for each t and st, in agreement with
the explanation in §3.5.3, and as recursion (3.26).

Smoothing

The recursion for γσtt = p(σt|v1:T ) is given by

γσtt = δct>1γ
st,dt,ct−1
t+1 + δct=1

ct+1=dt+1

∑
st+1

p(σt|σt+1, v1:T )︸ ︷︷ ︸
≈p(σt|ht+1=ĥT,σt+1

t+1 ,σt+1,v1:t)

γ
σt+1
t+1 ,

where we have used p(σt = (st+1, dt+1, ct+1 + 1)|st+1, dt+1, ct+1 <

dt+1, v1:T ) = 1.
The recursion for γ̂σtt is given by

γ̂σtt =
∑
σt+1

p(ht|σt:t+1, v1:T )p(σt+1|σt, v1:T )

=
{
δct>1
st+1=st
dt+1=dt
ct+1=ct−1

+ δct=1
ct+1=dt+1

∑
st+1
dt+1

p(σt+1|σt, v1:T )
}
p(ht|σt:t+1, v1:T ),

where we have used p(σt+1 = (st, dt, ct − 1)|st, dt, ct > 1) = 1.
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Notice that the approximation p(ht+1|σt:t+1, v1:T ) ≈ γ̂
σt+1
t+1 in the

computation of p(ht|σt:t+1, v1:T ) (see Equation (3.22)) becomes ex-
act for ct+1 < dt+1. Indeed p(ht+1|σt, σt+1 = (st, dt, ct − 1), v1:T ) =
p(ht+1|σt+1 = (st, dt, ct−1), v1:T ) follows from the fact that dt+1 = dt ≥
ct > ct − 1 = ct+1 and therefore ct must be equal to ct+1 + 1. There-
fore γ̂σtt is a Gaussian mixture with a complex number of components.
Gaussian collapsing of γ̂st,ct=1,dt

t reduces the cost to O(TS2d2
max).

Across-segment independence. From Equations (3.7) and (3.9), we
deduce that a time-recursive approach to computing γσtt = p(σt|v1:T )
is given by

γσtt = δct>1γ
st,dt,ct−1
t+1 + δct=1

ct+1=dt+1

∑
st+1

p(σt|σt+1, v1:t,����vt+1:T )γσt+1
t+1 (A.7)

= δct>1γ
st,dt,ct−1
t+1 + δct=1α

σ1
t
t

∑
st+1

πst+1st∑
s̃t πst+1s̃t

∑
d̃t
α
σ̃1
t
t

∑
dt+1

γ
st+1,dt+1,dt+1
t+1 .

This recursion has cost O(TSd2
max). Notice that ασtt = 0 implies γσtt =

γst,dt,ct−1
t+1 = . . . = γst,dt,1t+ct−1 = 0.

The recursion for γ̂σtt becomes

γ̂σtt = δct>1
st+1=st
dt+1=dt
ct+1=ct−1

p(ht|σt:t+1, v1:T )

+ δct=1
ct+1=dt+1

�
�
��

∑
st+1
dt+1

p(ht|σt,���σt+1, v1:t,����vt+1:T )(((((
(((p(σt+1|σt, v1:T ). (A.8)

This recursion has cost O(TSd2
max). It essentially performs smoothing

in a LGSSM with cost O(dt) on segment vt:t+dt−1 for each t, st and dt,
in agreement with the explanation in §3.5.3.
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