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Abstract

We consider the problem of learning fair decision systems
from data in which a sensitive attribute might affect the de-
cision along both fair and unfair pathways. We introduce a
counterfactual approach to disregard effects along unfair path-
ways that does not incur in the same loss of individual-specific
information as previous approaches. Our method corrects ob-
servations adversely affected by the sensitive attribute, and
uses these to form a decision. We leverage recent develop-
ments in deep learning and approximate inference to develop
a VAE-type method that is widely applicable to complex non-
linear models.

Introduction
Machine learning is increasingly being used to take decisions
that can severely affect people’s lives, e.g. in policing, educa-
tion, hiring, lending, and criminal risk assessment (Hoffman,
Kahn, and Li 2015; Dieterich, Mendoza, and Brennan 2016).
This phenomenon has been accompanied by an increase in
concern about disparate treatment caused by model errors
and bias in the data.

In response to calls from governments and institutions,
researchers have started to study how to ensure that learned
models do no take decisions that are unfair with respect to
sensitive attributes (e.g. race and gender) using different ap-
proaches. Among them, the causal framework (Pearl 2000;
Dawid 2007; Pearl, Glymour, and Jewell 2016; Peters, Janz-
ing, and Schölkopf 2017) offers an intuitive and powerful
way of reasoning about fairness, by viewing unfairness as the
presence of an unfair causal effect of the sensitive attribute
on the decision (Qureshi et al. 2016; Bonchi et al. 2017;
Kilbertus et al. 2017; Kusner et al. 2017; Russell et al. 2017;
Zhang and Wu 2017; Zhang, Wu, and Wu 2017; Nabi and
Shpitser 2018; Zhang and Bareinboim 2018).

Kusner et al. recently introduced a causal, individual-level,
definition of fairness, called counterfactual fairness, which
states that a decision is fair toward an individual if it coincides
with the one that would have been taken in a counterfactual
world in which the sensitive attribute were different. Counter-
factual fairness assumes that the entire effect of the sensitive
attribute on the decision is problematic. This is restrictive
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for scenarios in which the sensitive attribute might affect the
decision along both fair and unfair pathways.

For example, in the case of Berkeley’s alleged sex bias
in graduate admission (Pearl 2000), female applicants were
rejected more often than male applicants as they were more
often applying to departments with lower admission rates.
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Such an effect of gender through depart-
ment choice is not unfair as far as the
college is concerned. What would be in-
admissible is if the college treated male
and female applicants with the same
qualifications and applying to the same
departments differently because of gender. This complex
scenario can be represented by the graphical causal model
depicted above. In this model, A, Q, D, and Y are random
variables representing respectively gender, qualification, de-
partment choice, and admission decision, A→ D → Y is a
causal path representing the influence of gender A on admis-
sion decision Y through department choice D, and A→ Y
is a causal path representing the direct influence of A on Y .

To deal with such scenarios, we propose a novel defini-
tion of fairness called path-specific counterfactual fairness,
which states that a decision is fair toward an individual if
it coincides with the one that would have been taken in a
counterfactual world in which the sensitive attribute along
the unfair pathways were different. In the Berkeley example,
this would mean that an admission decision would be fair
toward a female candidate if it would remain the same when
pretending that the candidate were male along A→ Y .

We propose an approach that implements path-specific
counterfactual fairness by correcting the observations cor-
responding to variables that are descendants of the sen-
sitive attribute along unfair causal pathways. The correc-
tion aims at eliminating the unfair information contained
in the observations while retaining fair information. Fur-
thermore, we introduce a latent-variable method that, by
leveraging recent developments in deep learning and ap-
proximate inference, allows to apply this correction ap-
proach to complex non-linear models. Our correction proce-
dure allows to retain more individual-specific information
than previous approaches to path-specific fairness based
on constraining the learning of the model parameters to
eliminate or reduce unfair effects (Kilbertus et al. 2017;
Nabi and Shpitser 2018).
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Figure 1: (a): GCM with a confounder C for the causal effect
of A on Y . (b): GCM with one direct path and one indirect
causal path from A to Y . (c): GCM with a confounder C for
the causal effect of M on Y .

Background on Causality

Causal relationships among random variables can visually be
expressed using graphical causal models (GCMs). A GCM is
a special case of a graphical model (see Chiappa for a quick
introduction) that captures both independence and causal re-
lations. In this work, we restrict ourselves to directed acyclic
graphs, i.e. graphs in which a node cannot be an ancestor
of itself. In a directed acyclic graph, the joint distribution
over all nodes p(X1, . . . , XI) is given by the product of the
conditional distributions of each node Xi given its parents
pa(Xi), i.e. p(X1, . . . , XI) =

∏I
i=1 p(Xi|pa(Xi)).

GCMs enable us to give a graphical definition of causes
and causal effects: if there exists a directed path from A to
Y , then A is a potential cause of Y . Directed paths are also
called causal paths. The causal effect of A on Y can be seen
as the information that A sends to Y through causal paths,
or as the conditional distribution of Y given A restricted to
causal paths.

This implies that if there exist at least one open non-causal
path betweenA and Y then the causal effect ofA on Y differs
from p(Y |A). An example of such a path is A ← C → Y
in the GCM G of Fig. 1(a): the variable C is said to be a
confounder for the effect of A on Y . In this case, the causal
effect of A = a on Y can be seen as the conditional dis-
tribution p→A=a(Y |A = a) on the modified GCM G→A=a,
resulting from intervening on A by replacing p(A|C) with
a delta distribution δA=a (thereby removing the link from
C to A) and leaving the remaining conditional distributions
p(Y |A,C) and p(C) unaltered.

The rules of do-calculus (Pearl 2000; Pearl, Glymour, and
Jewell 2016) indicate if and how the conditional distribu-
tion in the intervened graph can be estimated using obser-
vations from G: if C is observed p→A=a(Y |A = a) =∑

C p(Y |A = a,C)p(C), whilst if C is unobserved esti-
mating the conditional distribution using only observations
from G is not possible – in this case the effect is said to be
non-identifiable.

We define YA=a to be the random variable with distribution
p(YA=a) = p→A=a(Y |A = a). YA=a is called potential
outcome variable and we will refer to it with the shorthand
Ya.

By performing different interventions on A along different
causal paths, it is possible to isolate the contribution of the
causal effect of A on Y along a group of paths.

Direct and Indirect Effect. The simplest cases are the iso-
lation of the contributions along the direct path A→ Y (di-
rect effect) and along the indirect causal paths A→ . . .→ Y
(indirect effect).

Suppose that the GCM contains only one indirect causal
path through a variableM , as in Fig. 1(b). We define Ya(Ma′)
to be the random variable that results from the interventions
A = a along A→ Y and A = a′ along A→M → Y .

The average direct effect (ADE) and the average indirect
effect (AIE) of A = a with respect to A = a′ are given by1

ADE = 〈Ya(Ma′)〉 − 〈Ya′〉, AIE = 〈Ya′(Ma)〉 − 〈Ya′〉 ,

where, e.g., 〈Ya〉 =
∫
Ya
Yap(Ya).

More generally, the ADE of A = a with respect to A = a′

can be estimated by computing the difference between 1) the
average effect of A = a along the direct path A → Y and
A = a′ along the indirect causal paths A→ . . .→ Y and 2)
the average effect of A = a′ along all causal paths.

Similarly, the AIE of A = a with respect to A = a′ can
be estimated by computing the difference between 1) the
average effect of A = a′ along the direct path A → Y and
A = a along the indirect causal paths A→ . . .→ Y and 2)
the average effect of A = a′ along all causal paths.

Under the independence assumption Ya,m ⊥⊥Ma′ (sequen-
tial ignorability), p(Ya(Ma′)) can be estimated as

p(Ya(Ma′)) =

∫
m

p(Ya(Ma′)|Ma′ = m)p(Ma′ = m)

=

∫
m

p(Ya,m|Ma′ = m)p(Ma′ = m)

=

∫
m

p(Ya,m)p(Ma′ = m) , (1)

where to obtain the second line we have used the consis-
tency property (Pearl, Glymour, and Jewell 2016). As there
are no confounders, intervening coincides with condition-
ing, i.e. p(Ya,m) = p(Y |A = a,M = m) and p(Ma′) =
p(M |A = a′).

If the GCM contains a confounder for the effect of eitherA
orM on Y , such as C in Fig. 1(c), then p(Ya,m) 6= p(Y |A =
a,M = m). In this case, by following similar arguments as
the ones used in Eq. (1) but conditioning on C (and therefore
assuming Ya,m ⊥⊥Ma′ |C), we obtain2

p(Ya(Ma′)) =

∫
m,c

p(Y |a,m, c)p(m|a′, c)p(c) .

If C is unobserved, the effect is non-identifiable.

Path-Specific Effect. In the more complex case in which,
rather than computing the direct and indirect effects, we
want to isolate the contribution of the effect along a specific
group of paths, we can generalize the formulas for the ADE

1In this paper, we consider the natural effect, which generally
differs from the controlled effect; the latter corresponds to interven-
ing on M .

2We use the notation p(Y |a,m, c) as a shorthand for p(Y |A =
a,M = m,C = c).



and AIE by using in the first term the variable resulting from
performing the interventionA = a along the group of interest
and A = a′ along the remaining causal paths.

For example, consider the GCM of Fig. 2 and assume that
we are interested in isolating the effect of A on Y along
the direct path A → Y and the paths passing through M ,
A→ M →, . . . ,→ Y , namely along the green and dashed
green-black links. The path-specific effect (PSE) of A = a
with respect to A = a′ for this group of paths is given by

PSE = 〈Ya(Ma, La′(Ma))〉 − 〈Ya′〉 ,

where p(Ya(Ma, La′(Ma))) can be computed as∫
c,m,l

p(Y |a, c,m, l)p(l|a′, c,m)p(m|a, c)p(c) .

In the simple case in which the GCM corresponds to a linear
model, e.g.

A ∼ Bernoulli(π), C = εc ,

M = θm + θma A+ θmc C + εm,

L = θl + θlaA+ θlcC + θlmM + εl ,

Y = θy + θyaA+ θycC + θymM + θyl L+ εy , (2)

where εc, εm, εl and εy are unobserved independent zero-
mean Gaussian terms, we have

〈Ya(Ma, La′(Ma))〉 = θy + θymθ
m + θyl (θl + θlmθ

m)

+ θyaa+ θymθ
m
a a+ θyl (θlaa

′ + θlmθ
m
a a) .

The PSE is therefore given by

θya(a− a′) + θymθ
m
a (a− a′) + θyl θ

l
mθ

m
a (a− a′) . (3)

Shpitser gives a recursive rule for obtaining the variable of
interest for computing the PSE, and a graphical method for
understanding whether the PSE is identifiable in the presence
of unobserved confounders.

Path-Specific Counterfactual Fairness
We are interested in complex scenarios in which the sensitive
attribute A might affect the decision variable Y along both
fair and unfair causal pathways. We assume that A can only
take two values a and a′, and that a′ is a baseline value.

Kilbertus et al. and Nabi and Shpitser propose to deal with
such scenarios by constraining the learning of the model
parameters such that the average of the unfair effect is elimi-
nated or reduced. More specifically, Nabi and Shpitser sug-
gest to perform model training by constraining the unfair
PSE of A on Y to lie in a small range. The main limitation of
this approach is that, at test time, it requires averaging over
all variables that are descendants of the sensitive attribute
through the unfair causal pathways. This can negatively im-
pact the system’s predictive accuracy, as individual-specific
information about those descendants is disregarded. Kilbertus
et al. propose to directly identify a set of constraints on the
conditional distribution of the decision variable that eliminate
the unfair effect. This can easily be done in linear models, but
it is unclear how to identify the constraints in more complex
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Figure 2: GCM corresponding to Eq. (2).

non-linear scenarios. Furthermore, this approach also unnec-
essarily removes information from problematic descendants.

In contrast, we propose to simply correct at test time the
decisions of individuals for which A = a by making sure
that they coincide with the one that would have been taken
in a counterfactual world in which the sensitive attribute
along the unfair pathways were set to the baseline. This re-
quires correcting the observations corresponding to variables
that are descendants of the sensitive attribute through unfair
pathways, by removing the unfair information induced by
the sensitive attribute while retaining the remaining fair in-
formation. We achieve this through a generalization of the
abduction-action-prediction method for counterfactual rea-
soning (Pearl 2000). We generally refer to our approach as
path-specific counterfactual fairness (PSCF). For the Berke-
ley alleged sex bias case for example, PSCF would ensure
that the admission decision of a female applicant coincides
with the one that would have been taken in a counterfactual
world in which her gender a were male a′ along the direct
path A→ Y , by taking a decision based on the intervention
A = a′ along A→ Y .

To highlight its relation with the approaches of Kilbertus
et al. and of Nabi and Shpitser, we first explain PSCF for
the case in which the data-generation mechanism is given
by the linear model of Eq. (2) (Fig. 2). Assume that the
direct effect of A on Y and the effect through M are con-
sidered unfair. PSCF corrects the decision of an individual
for which A = a by performing the intervention A = a′

along the direct path A→ Y and the paths passing through
M , A → M →, . . . ,→ Y , namely along the green and
dashed green-black links of Fig. 2. (Notice that the dashed
green-black links differ fundamentally from the green links;
they contain unfairness only as a consequence of A → M ,
corresponding to the parameter θma , being unfair.) More pre-
cisely, assuming that a′ = 0 is the baseline value of A,
given an instance {an = a = 1, cn,mn, ln}, the PSCF ap-
proach computes a fair prediction ynPSCF of yn as the mean
of p(Ya′(Ma′ , La(Ma′))|a, cn,mn, ln). This is achieved by
first computing εnm and εnl from an, cn,mn, ln and the model
equations (abduction), i.e.

εnm = mn − θm − θma − θmc cn ,
εnl = θl − θla − θlccn − θlmmn .

Then fair transformations ofmn and ln,mn
PSCF and lnPSCF, and

the fair prediction ynPSCF are obtained by substituting εnm and
εnl into the model equations with the problematic terms θma
and θla removed (this corresponds to the intervention A = a′

along the direct path A→ Y and the paths passing through



M , A→M →, . . . ,→ Y ), i.e.

mn
PSCF = θm +��θ

m
a + θmc c

n + εnm ,

lnPSCF = θl + θla + θlcc
n + θlmm

n
PSCF + εnl ,

ynPSCF = θy +��θ
y
a + θyc c

n + θymm
n
PSCF + θyl l

n
PSCF . (4)

This approach can be seen as performing a correction on the
decision through a correction on all the variables that are
descendants of the sensitive attribute along unfair pathways
(UP), namely M and L in this case.

To understand the relation with the fair inference on out-
comes (FIO) method suggested by Nabi and Shpitser, the
PSE for this model (Eq. (3)) with a = 1 and a′ = 0 takes the
form

PSE = θya + θma (θym + θyl θ
l
m) .

FIO consists in performing a constrained learning of the
model parameters θ such that the PSE lies in a small
range. After training, a prediction ynFIO of yn for an instance
{an, cn,mn, ln} can be obtained as ynFIO = 〈Y 〉p(Y |an,cn),
where p(Y |an, cn) is given by∫

m,l

p(Y |an, cn,m, l)p(l|an, cn,m)p(m|an, cn) ,

i.e. as

mn
FIO = θ̂m + θ̂ma a

n + θ̂mc c
n ,

lnFIO = θ̂l + θ̂laa
n + θ̂lcc

n + θ̂lmm
n
FIO ,

ynFIO = θ̂y + θ̂yaa
n + θ̂yc c

n + θ̂ymm
n
FIO + θ̂yl l

n
FIO ,

where θ̂ indicate the learned model parameters.
Assume that, at the end of training, θ̂ for both PSCF and

FIO coincide with the true underlying parameters θ, except
for θ̂ma and θ̂ya in FIO which are assigned zero values to
satisfy the constraint PSE = 0. Then, given an instance
{an = a = 1, cn,mn, ln}, we can express ynPSCF as ynPSCF =
〈Y 〉p(Y |an,cn,mn,ln) − PSE, since

ynPSCF = θy + θyc c
n + θymm

n + θyl l
n − θma (θym + θyl θ

l
m) ;

and ynFIO as ynFIO = 〈Y 〉p(Y |an,cn) − PSE, since

ynFIO = θy + θyc c
n + θymm̄

n + θyl l̄
n − θma (θym + θyl θ

l
m) ,

where m̄n = 〈M〉p(M |an,cn) = θm + θma + θmc c
n. This

formulation highlights the disadvantage of FIO over PSCF in
disregarding specific information about the individual, εnm
and εnl , through the use of m̄n and l̄n. As the constraint
PSE = 0 is not necessarily achieved by assigning zero values
to θ̂ma and θ̂ya, this correspondence does not generally hold.

As the reason for averaging over M and L, Nabi and Sh-
pitser indicate the need to account for the constraints that are
potentially imposed on θ̂ma and θ̂lm. If a constraint is imposed
on a parameter, then the corresponding variable needs indeed
to be integrated out to ensure that such a constraint is taken
into account in the prediction. For any model, the PSE would
contain the parameters corresponding to the UP descendants
of A, which means that FIO would always require integrating
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Figure 3: (a): Empirical distribution of the estimate of εnm for
the case in which mn is generated by Eq. (2) with an extra
non-linear term f(A,C) (continuous lines). Histograms of
p̃(Hm|A) (crossed lines). (b): GCM with an explicit latent
variable for each UP descendant of A.

out the UP descendants. However, even if we a priori identify
a set of constraints that give PSE = 0, the UP descendants
must be integrated out or corrected from unfairness even if
no constraints are imposed on the corresponding parame-
ters. Consider the case discussed above, where we achieve
PSE = 0 by setting θ̂ma and θ̂ya to zero values. This does not
constrain θ̂lm. However, to form a prediction of yn, we would
still need to integrate over L, as the observation ln contains
the problematic term θyl θ

l
mθ

m
a , corresponding to the unfair

part of the effect of A on L.
In this simple case, we could avoid having to integrate

over M and L by a priori imposing the constraints θ̂ya = 0

and θ̂ym = −θ̂yl θ̂lm, i.e. by constraining the conditional dis-
tribution used to form a prediction of yn, p(Y |A,C,M,L).
This coincides with the constraint proposed by Kilbertus et
al. to avoid proxy discrimination. However, this approach
achieves removal of the problematic unfairness in mn and ln
by cancelling out the entire mn from the prediction. This is
also suboptimal, as all information within mn is disregarded.
Furthermore, it is not clear how to extend this approach to
more complex scenarios.

In conclusion, the main advantage of our approach is that it
allows to retain fair individual-specific information contained
in the UP descendants. This is achieved by leaving unaltered
the underlying data-generation mechanism during training.

Model-Observations Mismatch. Whilst offering several
advantages over previous approaches to path-specific fairness,
in the presence of a strong mismatch between the assumed
and actual data-generation mechanisms, the PSCF approach
described above would most likely not remove unfairness
completely.

Indeed, in this case the estimates of εnm and εnl would not
be independent from the sensitive attribute A. Consider, for
example, the case in which we assume the data-generation
process of Eq. (2), but the observed mn, n = 1, . . . , N , are
generated from a modified version of Eq. (2) containing an
extra non-linear term f(A,C). The learned model parameters
θ̂ would not be able to describe this non-linear term, which
would therefore be absorbed into the estimate of εnm, making



it dependent on A, as shown in Fig. 3(a) (continuous lines).
To solve this issue, we propose to decompose εm into two

components, i.e. εm = Hm + ηm, and to adopt a training
procedure in which p̃(Hm|A = a), defined as

p̃(Hm|A = a) =
1

Na

Na∑
n=1

p(Hm|an = a, cn,mn, ln) (5)

where Na indicates the number of observations for which
an = a, is encouraged to have small dependence on A. We
can then use, e.g., the mean of p(Hm|an, cn,mn, ln), rather
than the estimate of εnm. In other words, we make sure that,
when estimating the latent randomness associated with an
individual, we only pick up the part that does not depend on
A, and only use this part to perform the prediction.

Encouraging independence onA is necessary, as otherwise
the estimated p̃(Hn

m|A) would be close to the estimate of
εnm. This is shown by the histograms of p̃(Hm|A) in Fig. 3(a)
(crossed lines), obtained by assuming a Gaussian distribution
for p(Hm) and by learning the model parameters using an
expectation maximization approach.

To more generally ensure that the abduction procedure
will not end up with estimates that depend on the sensitive
variable, we need to encourage latent independence on A for
each descendant of A that needs to be corrected, namely for
each UP descendant, and therefore introduce another latent
variable for L, Hl (see Fig. 3(b)).

We propose a way to encourage independence on A to-
gether with a method that generalizes the PSCF approach
described above to complex non-linear models in the next
section.

PSCF-VAE
Consider more general equations for the GCM of Fig. 3(b),
given by

A ∼ Bernoulli(π), C ∼ pθ(C) ,

Hm ∼ pθ(Hm), M ∼ pθ(M |A,C,Hm) ,

Hl ∼ pθ(Hl), L ∼ pθ(L|A,C,M,Hl) ,

Y ∼ pθ(Y |A,C,M,L) , (6)

where if M is categorical we assume pθ(M |A,C,Hm) =
fθ(A,C,Hm), where fθ(A,C,Hm) can be any function
(e.g. a neural network); whilst if M is continuous we assume
that pθ(M |A,C,Hm) is Gaussian with mean fθ(A,C,Hm).

The model likelihood pθ(A,C,M,L, Y ), and the posterior
distributions pθ(Hm|A,C,M,L) and pθ(Hl|A,C,M,L)
required to form fair predictions, are generally intractable.
We address this issue with a variational approach that
computes Gaussian approximations qφ(Hm|A,C,L,M)
and qφ(Hl|A,C,L,M) of pθ(Hm|A,C,M,L) and
pθ(Hl|A,C,M,L) respectively, parametrized by φ, as
discussed in detail below.

After learning θ and φ, analogously to Eq. (4), we compute
a fair prediction ynPSCF for an instance {an = a, cn,mn, ln}
as 〈Ya′(Ma′ , La(Ma′))〉p(Ya′ (Ma′ ,La(Ma′ ))|a,cn,mn,ln), esti-
mated using a Monte-Carlo approach. Specifically, we first
draw samples hn,im ∼ qφ(Hm|a, cn,mn, ln) and hn,il ∼

qφ(Hl|a, cn,mn, ln), for i = 1, . . . , I , and then form

mn,i
PSCF ∼ pθ(M |a

′, cn, hn,im ),

ln,iPSCF ∼ pθ(L|a, c
n,mn,i

PSCF, h
n,i
l ) ,

ynPSCF =
1

I

I∑
i=1

〈Y 〉pθ(Y |a′,cn,mn,iPSCF,l
n,i
PSCF)

. (7)

In the experiments, we used I = 500.
If we group the observed and latent variables as V =

{A,C,M,L, Y } and H = {Hm, Hl} respectively, the
variational approximation qφ(H|V ) to the intractable pos-
terior pθ(H|V ) is obtained by finding the variational pa-
rameters φ that minimize the Kullback-Leibler divergence
KL(qφ(H|V )||pθ(H|V )). This is equivalent to maximizing
a lower bound Fθ,φ on the log of the marginal likelihood
log pθ(V ) ≥ Fθ,φ with

Fθ,φ = −〈log qφ(H|V )〉qφ(H|V ) + 〈log pθ(V,H)〉qφ(H|V ) ,

where, e.g.,

〈log qφ(H|V )〉qφ(H|V ) =

∫
H

qφ(H|V ) log qφ(H|V ).

In our case, rather than qφ(H|V ), we use qφ(H|V ∗ ≡ V \Y ).
Our approach is therefore to learn simultaneously the latent
embedding and predictive distributions in Eq. (7). This could
be preferable to other causal latent variable approaches such
as the FairLearning algorithm proposed by Kusner et al.,
which separately learns a predictor of Y using samples from
the previously inferred latent variables and from the non-
descendants of A.

In order for Fθ,φ to be tractable conjugacy is required,
which heavily restricts the family of models that can be used.
This issue can be addressed with a Monte-Carlo approxi-
mation known as variational auto-encoding (VAE) (Kingma
and Welling 2014; Rezende, Mohamed, and Wierstra 2014).
This approach represents H as a non-linear transformation
H = fφ(E) of a random variable E from a parameter free dis-
tribution qε. As we choose q to be Gaussian, H = µφ + σφE
with qε = N (0, 1) for the univariate case. This enables us to
rewrite the bound as

Fθ,φ = −〈log qφ(H=fφ(E)) + log pθ(V,H=fφ(E))〉qε .

The first part of the gradient of Fθ,φ with respect to φ,
∇φFθ,φ, can be computed analytically, whilst the second
part is approximated by

〈∇φ log pθ(V,H = fφ(E))〉qε ≈

1

I

I∑
i=1

∇φ log pθ(V, h
i = fφ(εi)), εi ∼ qε .

In the experiments, we used I = 1, as commonly done in the
VAE literature. The variational parameters φ are parametrized
by a neural network taking as input V ∗.

Independence on A. In order to ensure that q̃φ(H|A), de-
fined similarly to Eq. (5), does not depend on A, we exper-
imented with an adversary approach (Edwards and Storkey
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Figure 4: (a): GCM for the UCI Adult dataset. (b): GCM for
the UCI German Credit dataset.

2016) and with a maximum mean discrepancy (MMD) penal-
ization approach (Gretton et al. 2012; Louizos et al. 2016),
which gave similar but more stable results. The MMD ap-
proach adds a penalty term to the bound Fθ,φ,

−βLMMD(a, a′) ,

where β is a weighting factor that determines the degree of
independence, and therefore might correspond to different
levels of fairness. LMMD(a, a′) is the sum of several terms,
one for each latent variable, where e.g. the term for Hm is
given by

Lm
MMD(a, a

′) =
1

N2
a

Na∑
i=1

Na∑
j=1

k(ha,i
m , ha,j

m )

+
1

N2
a′

Na′∑
i=1

Na′∑
j=1

k(ha′,i
m , ha′,j

m )− 2

NaNa′

Na∑
i=1

Na′∑
j=1

k(ha,i
m , ha′,j

m ) ,

where k is a Gaussian kernel, and ha,im is a sample from the
variational distribution for an individual for which A = a.

Experiments
We evaluate the proposed PSCF-VAE method on the UCI
Adult and German Credit datasets.

As prior distribution pθ for each latent variable (Eq. (6))
we used a ten-dimensional Gaussian with diagonal covari-
ance matrix, whilst as fθ we used a neural network with one
linear layer of size 100 with tanh activation, followed by a
linear layer (the outputs were Gaussian means for continuous
variables and logits for categorical variables). As variational
distribution qφ we used a ten-dimensional Gaussian with di-
agonal covariance, with means and log variances obtained
as the outputs of a neural network with two linear layers of
size 20 and tanh activation, followed by a linear layer. Train-
ing was achieved with the Adam optimizer (Kingma and Ba
2015) with learning rate 0.01, mini-batch size 128, and de-
fault values β1 = 0.9, β2 = 0.999, and ε = 1e-8. Training
was stopped after 20,000 steps.

The UCI Adult Dataset
The Adult dataset from the UCI repository (Lichman 2013)
contains 14 attributes including age, working class, educa-
tion level, marital status, occupation, relationship, race, gen-
der, capital gain and loss, working hours, and nationality
for 48,842 individuals; 32,561 and 16,281 for the training
and test sets respectively. The goal is to predict whether the
individual’s annual income is above or below $50,000. We
assumed the GCM of Fig. 4(a) (following Nabi and Shpitser),
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Figure 5: Test accuracy of PSCF-VAE on the UCI Adult
dataset for increasing values of β.

where A corresponds to the protected attribute sex, C to the
duple age and nationality, M to marital status, L to level
of education, R to the triple working class, occupation, and
hours per week, and Y to the income class3. Age, level of
education and hours per week are continuous, whilst sex,
nationality, marital status, working class, occupation, and
income are categorical. Besides the direct effect A→ Y , the
effect of A on Y through marital status, namely along the
paths A→M →, . . . ,→ Y , is considered unfair.

Nabi and Shpitser assume that all variables are contin-
uous, except A and Y , and linearly related, except Y for
which p(Y = 1|pa(Y )) = π = σ(θy +

∑
Xi∈pa(Y ) θ

y
xiXi)

where σ(·) is the sigmoid function. With the encoding
A ∈ {0, 1}, where 0 indicates the male baseline value,
and under the approximation log(π/(1 − π)) ≈ log π,
we can write the PSE in the odds ratio scale as PSE ≈
exp(θya + θymθ

m
a + θyl θ

l
mθ

m
a + θyr (θrmθ

m
a + θrl θ

l
mθ

m
a )). An

instance from the test set {an, cn,mn, ln, rn} is classi-
fied by using p(Y |an, cn) =

∫
m,l,r

p(Y |an, cn,m, l, r) ×
p(r|an, cn,m, l)p(l|an, cn,m)p(m|an, cn).

In Fig. 5, we show the accuracy obtained by PSCF-VAE on
the test set for increasing values of β, ranging from β = 0 (no
MMD penalization) to β = 10, 000. As we can see, accuracy
decreases from 81.2% to 73.4%. Notice that predictions were
formed using samples of Hm, Hl and Hr also for males,
even if not required. Also notice that forming predictions
from pθ(Y |an, cn,mn, ln, rn) gives 82.7% accuracy.

In Fig. 6, we show histograms of two dimensions of
q̃φ(Hm|A) (first and second row) and one dimension of
q̃φ(Hl|A) (third row) for β = 0, β = 2, 500, and β = 5, 000
(left to right) after 20,000 training steps for females (red) and
males (blue) – these are the only variables that show differ-
ences between male and females. As we can see, increasing β
induces a reduction in the number of modes in the posterior,
which corresponds to information loss. For β = 10, 000 all
histograms are unimodal (not shown). For β = 5, 000, for

3We omit race, and capital gain and loss (although including
capital gain and loss would increase test accuracy from 82.7% to
84.7%) to use the same attributes as Nabi and Shpitser.
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Figure 6: Histograms of two dimensions of q̃φ(Hm|A) (first
and second row) and one dimension of q̃φ(Hl|A) (third row)
for β = 0, β = 2, 500, and β = 5, 000 (left to right) after
20,000 training steps for females (red) and males (blue).

which accuracy is around 78%, the histograms for females
and males are similar – this can therefore be considered a fair
accuracy.

The unconstrained PSE on this dataset is 3.64. When con-
straining the PSE to be smaller than 3.7 (thus essentially
imposing no constraint), FIO gives 73.8% accuracy, due the
information that is lost by integrating out M,L and R. Con-
straining the PSE to be smaller than 3.6 also gives 73.8%
accuracy. Constraining the PSE to be smaller than 1.05, as
suggested by Nabi and Shpitser, gives 73.4% accuracy (Nabi
and Shpitser report 72%). These results demonstrate that loss
in accuracy in FIO is due to integrating out M,L and R,
rather than to ensuring fairness.

The UCI German Credit Dataset
The German Credit dataset from the UCI repository contains
20 attributes of 1,000 individuals applying for loans. Each
applicant is classified as a good or bad credit risk, i.e. as
likely or not likely to repay the loan. We assume the GCM in
Fig. 4(b), where A corresponds to the protected attribute sex,
C to age, S to the triple status of checking account, savings,
and housing, and R the duple credit amount and repayment
duration. The attributes age, credit amount, and repayment
duration are continuous, whilst checking account, savings,
and housing are categorical. Besides the direct effectA→ Y ,
we would like to remove the effect of A on Y through S. We

5 4 3 2 1 0 1 2 3 4 8 6 4 2 0 2 4 6 8

Figure 7: Histograms of q̃φ(Hs|A) for one dimension of the
variable housing for β = 0 and β = 10, 000 after 20,000
training steps for females (red) and males (blue).

only need to introduce a hidden variable Hs for S, as R does
not need to be corrected.

We divided the dataset into training and test sets of sizes
700 and 300 respectively. As for the Adult dataset, we varied
β from 0 to 10,000. The test accuracy remained 76.0% for
all values of β (predictions were formed using samples of
Hs also for males). This is same accuracy obtained when
forming predictions from pθ(Y |an, cn, sn, rn).

In Fig. 7, we show q̃φ(Hs|A) for one dimension of the
variable housing, which shows the most significant difference
between females and males, for β = 0 and β = 10, 000.

Conclusions
We have proposed a novel intuitive definition of fairness, path-
specific counterfactual fairness, which states that a decision
is fair toward an individual if it coincides with the one that
would have been taken in a counterfactual world in which the
sensitive attribute along the unfair pathways were different.

We have introduced a latent inference-projection method,
PSCF-VAE, that achieves path-specific counterfactual fair-
ness by correcting the variables that are descendants of the
sensitive attribute along unfair pathways during testing, leav-
ing unaltered the underlying data-generation mechanism dur-
ing training. The proposed method is widely applicable to
complex non-linear models.

PSCF-VAE requires providing the causal model underly-
ing the data generation process. Future work will consider
relaxing this requirement.
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